2017-04-19 17:16:17 +02:00
|
|
|
|
Require Import HoTT.
|
|
|
|
|
Require Export HoTT.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Require Import FunextAxiom.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
|
|
|
|
Module Export FinSet.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Section FSet.
|
|
|
|
|
Variable A : Type.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
|
|
|
|
Private Inductive FSet : Type :=
|
2017-05-22 18:11:47 +02:00
|
|
|
|
| E : FSet
|
|
|
|
|
| L : A -> FSet
|
2017-04-19 17:16:17 +02:00
|
|
|
|
| U : FSet -> FSet -> FSet.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Notation "{| x |}" := (L x).
|
|
|
|
|
Infix "∪" := U (at level 8, right associativity).
|
|
|
|
|
Notation "∅" := E.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Axiom assoc : forall (x y z : FSet ),
|
|
|
|
|
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
|
|
|
|
Axiom comm : forall (x y : FSet),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
x ∪ y = y ∪ x.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Axiom nl : forall (x : FSet),
|
|
|
|
|
∅ ∪ x = x.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Axiom nr : forall (x : FSet),
|
|
|
|
|
x ∪ ∅ = x.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
|
|
|
|
Axiom idem : forall (x : A),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
{| x |} ∪ {|x|} = {|x|}.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
|
|
|
|
Axiom trunc : IsHSet FSet.
|
|
|
|
|
|
|
|
|
|
Fixpoint FSet_rec
|
|
|
|
|
(P : Type)
|
|
|
|
|
(H: IsHSet P)
|
|
|
|
|
(e : P)
|
|
|
|
|
(l : A -> P)
|
|
|
|
|
(u : P -> P -> P)
|
|
|
|
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
|
|
|
(commP : forall (x y : P), u x y = u y x)
|
|
|
|
|
(nlP : forall (x : P), u e x = x)
|
|
|
|
|
(nrP : forall (x : P), u x e = x)
|
|
|
|
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
|
|
|
(x : FSet)
|
|
|
|
|
{struct x}
|
|
|
|
|
: P
|
|
|
|
|
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
|
2017-05-22 18:11:47 +02:00
|
|
|
|
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
|
2017-04-19 17:16:17 +02:00
|
|
|
|
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
|
|
|
|
|
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|
|
|
|
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
end) assocP commP nlP nrP idemP H.
|
|
|
|
|
|
|
|
|
|
Axiom FSet_rec_beta_assoc : forall
|
|
|
|
|
(P : Type)
|
|
|
|
|
(H: IsHSet P)
|
|
|
|
|
(e : P)
|
|
|
|
|
(l : A -> P)
|
|
|
|
|
(u : P -> P -> P)
|
|
|
|
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
|
|
|
(commP : forall (x y : P), u x y = u y x)
|
|
|
|
|
(nlP : forall (x : P), u e x = x)
|
|
|
|
|
(nrP : forall (x : P), u x e = x)
|
|
|
|
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
|
|
|
(x y z : FSet),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|
|
|
|
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
|
|
|
|
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_rec_beta_comm : forall
|
|
|
|
|
(P : Type)
|
|
|
|
|
(H: IsHSet P)
|
|
|
|
|
(e : P)
|
|
|
|
|
(l : A -> P)
|
|
|
|
|
(u : P -> P -> P)
|
|
|
|
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
|
|
|
(commP : forall (x y : P), u x y = u y x)
|
|
|
|
|
(nlP : forall (x : P), u e x = x)
|
|
|
|
|
(nrP : forall (x : P), u x e = x)
|
|
|
|
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
|
|
|
(x y : FSet),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
|
|
|
|
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_rec_beta_nl : forall
|
|
|
|
|
(P : Type)
|
|
|
|
|
(H: IsHSet P)
|
|
|
|
|
(e : P)
|
|
|
|
|
(l : A -> P)
|
|
|
|
|
(u : P -> P -> P)
|
|
|
|
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
|
|
|
(commP : forall (x y : P), u x y = u y x)
|
|
|
|
|
(nlP : forall (x : P), u e x = x)
|
|
|
|
|
(nrP : forall (x : P), u x e = x)
|
|
|
|
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
|
|
|
(x : FSet),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_rec_beta_nr : forall
|
|
|
|
|
(P : Type)
|
|
|
|
|
(H: IsHSet P)
|
|
|
|
|
(e : P)
|
|
|
|
|
(l : A -> P)
|
|
|
|
|
(u : P -> P -> P)
|
|
|
|
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
|
|
|
(commP : forall (x y : P), u x y = u y x)
|
|
|
|
|
(nlP : forall (x : P), u e x = x)
|
|
|
|
|
(nrP : forall (x : P), u x e = x)
|
|
|
|
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
|
|
|
(x : FSet),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_rec_beta_idem : forall
|
|
|
|
|
(P : Type)
|
|
|
|
|
(H: IsHSet P)
|
|
|
|
|
(e : P)
|
|
|
|
|
(l : A -> P)
|
|
|
|
|
(u : P -> P -> P)
|
|
|
|
|
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
|
|
|
|
(commP : forall (x y : P), u x y = u y x)
|
|
|
|
|
(nlP : forall (x : P), u e x = x)
|
|
|
|
|
(nrP : forall (x : P), u x e = x)
|
|
|
|
|
(idemP : forall (x : A), u (l x) (l x) = l x)
|
|
|
|
|
(x : A),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
|
|
|
|
idemP x.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
|
|
|
|
|
(* Induction principle *)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Fixpoint FSet_ind
|
|
|
|
|
(P : FSet -> Type)
|
|
|
|
|
(H : forall a : FSet, IsHSet (P a))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(eP : P E)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(lP : forall a: A, P (L a))
|
|
|
|
|
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
|
|
|
|
(assocP : forall (x y z : FSet)
|
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz))
|
|
|
|
|
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px)
|
|
|
|
|
(nlP : forall (x : FSet) (px: P x),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
nl x # uP E x eP px = px)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(nrP : forall (x : FSet) (px: P x),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
nr x # uP x E px eP = px)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
|
|
|
|
(x : FSet)
|
|
|
|
|
{struct x}
|
|
|
|
|
: P x
|
|
|
|
|
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
2017-05-22 18:11:47 +02:00
|
|
|
|
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
2017-04-19 17:16:17 +02:00
|
|
|
|
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
|
|
|
|
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
|
|
|
|
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
|
|
|
|
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
|
|
|
|
end) H assocP commP nlP nrP idemP.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_assoc : forall
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(P : FSet -> Type)
|
|
|
|
|
(H : forall a : FSet, IsHSet (P a))
|
|
|
|
|
(eP : P E)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(lP : forall a: A, P (L a))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
|
|
|
|
(assocP : forall (x y z : FSet)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
2017-04-19 17:16:17 +02:00
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nlP : forall (x : FSet) (px: P x),
|
|
|
|
|
nl x # uP E x eP px = px)
|
|
|
|
|
(nrP : forall (x : FSet) (px: P x),
|
|
|
|
|
nr x # uP x E px eP = px)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(x y z : FSet),
|
|
|
|
|
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(assoc x y z)
|
|
|
|
|
=
|
|
|
|
|
(assocP x y z
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
|
|
|
|
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
|
|
|
|
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Axiom FSet_ind_beta_comm : forall
|
|
|
|
|
(P : FSet -> Type)
|
|
|
|
|
(H : forall a : FSet, IsHSet (P a))
|
|
|
|
|
(eP : P E)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(lP : forall a: A, P (L a))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
|
|
|
|
(assocP : forall (x y z : FSet)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
2017-04-19 17:16:17 +02:00
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nlP : forall (x : FSet) (px: P x),
|
|
|
|
|
nl x # uP E x eP px = px)
|
|
|
|
|
(nrP : forall (x : FSet) (px: P x),
|
|
|
|
|
nr x # uP x E px eP = px)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(x y : FSet),
|
|
|
|
|
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
|
|
|
|
(commP x y
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
|
|
|
|
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_nl : forall
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(P : FSet -> Type)
|
|
|
|
|
(H : forall a : FSet, IsHSet (P a))
|
|
|
|
|
(eP : P E)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(lP : forall a: A, P (L a))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
|
|
|
|
(assocP : forall (x y z : FSet)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
2017-04-19 17:16:17 +02:00
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nlP : forall (x : FSet) (px: P x),
|
|
|
|
|
nl x # uP E x eP px = px)
|
|
|
|
|
(nrP : forall (x : FSet) (px: P x),
|
|
|
|
|
nr x # uP x E px eP = px)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(x : FSet),
|
|
|
|
|
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_nr : forall
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(P : FSet -> Type)
|
|
|
|
|
(H : forall a : FSet, IsHSet (P a))
|
|
|
|
|
(eP : P E)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(lP : forall a: A, P (L a))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
|
|
|
|
(assocP : forall (x y z : FSet)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
2017-04-19 17:16:17 +02:00
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nlP : forall (x : FSet) (px: P x),
|
|
|
|
|
nl x # uP E x eP px = px)
|
|
|
|
|
(nrP : forall (x : FSet) (px: P x),
|
|
|
|
|
nr x # uP x E px eP = px)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(x : FSet),
|
|
|
|
|
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_idem : forall
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(P : FSet -> Type)
|
|
|
|
|
(H : forall a : FSet, IsHSet (P a))
|
|
|
|
|
(eP : P E)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(lP : forall a: A, P (L a))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
|
|
|
|
(assocP : forall (x y z : FSet)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz))
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
2017-04-19 17:16:17 +02:00
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px)
|
2017-05-22 18:11:47 +02:00
|
|
|
|
(nlP : forall (x : FSet) (px: P x),
|
|
|
|
|
nl x # uP E x eP px = px)
|
|
|
|
|
(nrP : forall (x : FSet) (px: P x),
|
|
|
|
|
nr x # uP x E px eP = px)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
|
|
|
|
(x : A),
|
2017-05-22 18:11:47 +02:00
|
|
|
|
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x)
|
2017-04-19 17:16:17 +02:00
|
|
|
|
=
|
|
|
|
|
idemP x.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
End FSet.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Parameter A : Type.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
|
|
|
|
|
Definition deceq (x y : A) :=
|
|
|
|
|
if dec (x = y) then true else false.
|
|
|
|
|
|
|
|
|
|
Theorem deceq_sym : forall x y, deceq x y = deceq y x.
|
|
|
|
|
Proof.
|
|
|
|
|
intros x y.
|
|
|
|
|
unfold deceq.
|
|
|
|
|
destruct (dec (x = y)) ; destruct (dec (y = x)) ; cbn.
|
|
|
|
|
- reflexivity.
|
|
|
|
|
- pose (n (p^)) ; contradiction.
|
|
|
|
|
- pose (n (p^)) ; contradiction.
|
|
|
|
|
- reflexivity.
|
|
|
|
|
Defined.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Arguments E {_}.
|
|
|
|
|
Arguments U {_} _ _.
|
|
|
|
|
Arguments L {_} _.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
|
2017-05-22 23:05:43 +02:00
|
|
|
|
Theorem idemU : forall x : FSet A, U x x = x.
|
|
|
|
|
Proof.
|
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
|
|
|
|
|
- apply nl.
|
|
|
|
|
- apply idem.
|
|
|
|
|
- intros x y P Q.
|
|
|
|
|
rewrite assoc.
|
|
|
|
|
rewrite (comm A x y).
|
|
|
|
|
rewrite <- (assoc A y x x).
|
|
|
|
|
rewrite P.
|
|
|
|
|
rewrite (comm A y x).
|
|
|
|
|
rewrite <- (assoc A x y y).
|
|
|
|
|
rewrite Q.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Definition isIn : A -> FSet A -> Bool.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Proof.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
intros a.
|
|
|
|
|
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
|
|
|
|
|
- exact false.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
- intro a'. apply (deceq a a').
|
2017-05-22 18:11:47 +02:00
|
|
|
|
- apply orb.
|
|
|
|
|
- intros x y z. destruct x; reflexivity.
|
|
|
|
|
- intros x y. destruct x, y; reflexivity.
|
|
|
|
|
- intros x. reflexivity.
|
|
|
|
|
- intros x. destruct x; reflexivity.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
- intros a'. destruct (deceq a a'); reflexivity.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Set Implicit Arguments.
|
|
|
|
|
|
|
|
|
|
Definition comprehension :
|
2017-04-19 17:16:17 +02:00
|
|
|
|
(A -> Bool) -> FSet A -> FSet A.
|
|
|
|
|
Proof.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
intros P.
|
|
|
|
|
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
|
|
|
|
|
- apply E.
|
|
|
|
|
- intro a.
|
|
|
|
|
refine (if (P a) then L a else E).
|
|
|
|
|
- apply U.
|
|
|
|
|
- intros. cbv. apply assoc.
|
|
|
|
|
- intros. cbv. apply comm.
|
|
|
|
|
- intros. cbv. apply nl.
|
|
|
|
|
- intros. cbv. apply nr.
|
|
|
|
|
- intros. cbv.
|
|
|
|
|
destruct (P x); simpl.
|
|
|
|
|
+ apply idem.
|
|
|
|
|
+ apply nl.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Definition intersection :
|
2017-04-19 17:16:17 +02:00
|
|
|
|
FSet A -> FSet A -> FSet A.
|
|
|
|
|
Proof.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
intros X Y.
|
|
|
|
|
apply (comprehension (fun (a : A) => isIn a X) Y).
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Lemma intersection_E : forall x,
|
|
|
|
|
intersection E x = E.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Proof.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
|
|
|
|
- reflexivity.
|
|
|
|
|
- intro a.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
reflexivity.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
- unfold intersection.
|
|
|
|
|
intros x y P Q.
|
|
|
|
|
cbn.
|
|
|
|
|
rewrite P.
|
|
|
|
|
rewrite Q.
|
|
|
|
|
apply nl.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
Theorem intersection_La : forall a x,
|
|
|
|
|
intersection (L a) x = if isIn a x then L a else E.
|
2017-04-19 17:16:17 +02:00
|
|
|
|
Proof.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
intro a.
|
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
|
|
|
|
- reflexivity.
|
|
|
|
|
- intro b.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
cbn.
|
|
|
|
|
rewrite deceq_sym.
|
|
|
|
|
unfold deceq.
|
|
|
|
|
destruct (dec (a = b)).
|
|
|
|
|
* rewrite p ; reflexivity.
|
|
|
|
|
* reflexivity.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
- unfold intersection.
|
|
|
|
|
intros x y P Q.
|
|
|
|
|
cbn.
|
|
|
|
|
rewrite P.
|
|
|
|
|
rewrite Q.
|
|
|
|
|
destruct (isIn a x) ; destruct (isIn a y).
|
|
|
|
|
* apply idem.
|
|
|
|
|
* apply nr.
|
|
|
|
|
* apply nl.
|
|
|
|
|
* apply nl.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
Defined.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
|
|
|
|
|
Theorem comprehension_or : forall ϕ ψ x,
|
|
|
|
|
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x) (comprehension ψ x).
|
|
|
|
|
Proof.
|
|
|
|
|
intros ϕ ψ.
|
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
|
|
|
|
- cbn. symmetry ; apply nl.
|
|
|
|
|
- cbn. intros.
|
|
|
|
|
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
|
|
|
|
|
* apply idem.
|
|
|
|
|
* apply nr.
|
|
|
|
|
* apply nl.
|
|
|
|
|
* apply nl.
|
|
|
|
|
- simpl. intros x y P Q.
|
|
|
|
|
cbn.
|
|
|
|
|
rewrite P.
|
|
|
|
|
rewrite Q.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
rewrite <- assoc.
|
|
|
|
|
rewrite (assoc A (comprehension ψ x)).
|
|
|
|
|
rewrite (comm A (comprehension ψ x) (comprehension ϕ y)).
|
|
|
|
|
rewrite <- assoc.
|
|
|
|
|
rewrite <- assoc.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Theorem intersection_isIn : forall a x y,
|
|
|
|
|
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
|
|
|
|
|
Proof.
|
|
|
|
|
intros a.
|
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
|
|
|
|
|
- intros y.
|
|
|
|
|
rewrite intersection_E.
|
|
|
|
|
reflexivity.
|
|
|
|
|
- intros b y.
|
|
|
|
|
rewrite intersection_La.
|
|
|
|
|
unfold deceq.
|
|
|
|
|
destruct (dec (a = b)) ; cbn.
|
|
|
|
|
* rewrite p.
|
|
|
|
|
destruct (isIn b y).
|
|
|
|
|
+ cbn.
|
|
|
|
|
unfold deceq.
|
|
|
|
|
destruct (dec (b = b)).
|
|
|
|
|
{ reflexivity. }
|
|
|
|
|
{ pose (n idpath). contradiction. }
|
|
|
|
|
+ reflexivity.
|
|
|
|
|
* destruct (isIn b y).
|
|
|
|
|
+ cbn.
|
|
|
|
|
unfold deceq.
|
|
|
|
|
destruct (dec (a = b)).
|
|
|
|
|
{ pose (n p). contradiction. }
|
|
|
|
|
{ reflexivity. }
|
|
|
|
|
+ reflexivity.
|
|
|
|
|
- intros x y P Q z.
|
|
|
|
|
enough (intersection (U x y) z = U (intersection x z) (intersection y z)).
|
|
|
|
|
rewrite X.
|
|
|
|
|
cbn.
|
|
|
|
|
rewrite P.
|
|
|
|
|
rewrite Q.
|
|
|
|
|
destruct (isIn a x) ; destruct (isIn a y) ; destruct (isIn a z) ; reflexivity.
|
|
|
|
|
admit.
|
|
|
|
|
Admitted.
|
|
|
|
|
|
2017-05-22 18:11:47 +02:00
|
|
|
|
|
|
|
|
|
Theorem intersection_assoc : forall x y z,
|
|
|
|
|
intersection x (intersection y z) = intersection (intersection x y) z.
|
|
|
|
|
Proof.
|
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
2017-05-22 23:05:43 +02:00
|
|
|
|
- intros y z.
|
|
|
|
|
cbn.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
rewrite intersection_E.
|
|
|
|
|
rewrite intersection_E.
|
|
|
|
|
rewrite intersection_E.
|
|
|
|
|
reflexivity.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
- intros a y z.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
cbn.
|
|
|
|
|
rewrite intersection_La.
|
|
|
|
|
rewrite intersection_La.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
rewrite intersection_isIn.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
destruct (isIn a y).
|
|
|
|
|
* rewrite intersection_La.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
destruct (isIn a z).
|
|
|
|
|
+ reflexivity.
|
2017-05-22 18:11:47 +02:00
|
|
|
|
+ reflexivity.
|
2017-05-22 23:05:43 +02:00
|
|
|
|
* rewrite intersection_E.
|
|
|
|
|
reflexivity.
|
|
|
|
|
- unfold intersection. cbn.
|
|
|
|
|
intros x y P Q z z'.
|
|
|
|
|
rewrite comprehension_or.
|
|
|
|
|
rewrite P.
|
|
|
|
|
rewrite Q.
|
|
|
|
|
rewrite comprehension_or.
|
|
|
|
|
cbn.
|
|
|
|
|
rewrite comprehension_or.
|
|
|
|
|
reflexivity.
|
|
|
|
|
|