Cleanup
This commit is contained in:
parent
8601f7c673
commit
4dd4e4f383
133
ArrayMachine.v
133
ArrayMachine.v
|
@ -1,7 +1,8 @@
|
|||
Require Import Rushby.
|
||||
From stdpp Require Import list relations collections fin_collections.
|
||||
(** Instantiation of the intransitive interference with an "array machine" *)
|
||||
Require Import NI.Rushby.
|
||||
From stdpp Require Import list relations gmap sets fin_sets.
|
||||
|
||||
Module ArrayMachine <: Mealy.
|
||||
Module ArrayMachine.
|
||||
|
||||
Definition state := nat -> nat.
|
||||
Inductive command :=
|
||||
|
@ -23,39 +24,51 @@ Definition preform (s : state) (a : action) : state * out :=
|
|||
Definition step s a := fst (preform s a).
|
||||
Definition output s a := snd (preform s a).
|
||||
Definition initial (x : nat) := 0.
|
||||
End ArrayMachine.
|
||||
|
||||
|
||||
End ArrayMachine.
|
||||
Import ArrayMachine.
|
||||
Module M := Rushby.Rushby ArrayMachine.
|
||||
Import M.
|
||||
Instance ArrayMealyMachine : Mealy state action out :=
|
||||
{ initial := initial;
|
||||
step := step;
|
||||
output := output }.
|
||||
|
||||
Eval compute in (do_actions [Write 1 1] 2).
|
||||
(** ===> 0 *)
|
||||
|
||||
Definition domain := action.
|
||||
Definition nameA := nat.
|
||||
Definition valA := nat.
|
||||
Definition observeA (u : domain) : FinSet nameA :=
|
||||
Definition observeA (u : domain) : gset nameA :=
|
||||
match u with
|
||||
| Read i => {[ i ]}
|
||||
| Write _ _ => ∅
|
||||
end.
|
||||
Definition alterA (u : domain) : FinSet valA :=
|
||||
Definition alterA (u : domain) : gset valA :=
|
||||
match u with
|
||||
| Read _ => ∅
|
||||
| Write i _ => {[ i ]}
|
||||
end.
|
||||
|
||||
|
||||
Instance domain_dec : forall (u v : domain), Decision (u = v).
|
||||
Proof. intros.
|
||||
Instance domain_dec : EqDecision domain.
|
||||
Proof. intros u v.
|
||||
unfold Decision.
|
||||
repeat (decide equality).
|
||||
Defined.
|
||||
|
||||
Instance arraymachine_ss : StructuredState domain :=
|
||||
Instance domain_countable : Countable domain.
|
||||
refine (inj_countable' (λ x, match x with
|
||||
| Write i1 i2 => (inl (i1, i2))
|
||||
| Read i => (inr i)
|
||||
end) (λ x, match x with
|
||||
| inl (i1, i2) => Write i1 i2
|
||||
| inr i => Read i
|
||||
end) _); by intros [].
|
||||
Defined.
|
||||
|
||||
Instance arraymachine_ss : StructuredState domain :=
|
||||
{ name := nameA; value := valA; contents s n := s n
|
||||
; observe := observeA; alter := alterA }.
|
||||
; observe := observeA; alter := alterA }.
|
||||
|
||||
Definition interference (u v : domain) :=
|
||||
(exists (n : nameA), n ∈ alterA u ∧ n ∈ observeA v).
|
||||
|
@ -64,59 +77,64 @@ Inductive interferenceR : relation domain :=
|
|||
| interference_refl : forall (u : domain), interferenceR u u
|
||||
| interference_step : forall (u v: domain), interference u v -> interferenceR u v.
|
||||
|
||||
Instance policy_ss : Policy domain :=
|
||||
Instance: Set_ nameA (gset nameA).
|
||||
apply _.
|
||||
Qed.
|
||||
|
||||
Instance policy_ss : Policy domain :=
|
||||
{ policy := interferenceR
|
||||
; dom := fun (a : action) => (a : domain) }.
|
||||
Proof.
|
||||
intros. unfold Decision.
|
||||
destruct v as [i j | i]; destruct w as [m n | m].
|
||||
- destruct (decide (i = m)). destruct (decide (j = n)); subst; auto.
|
||||
left. constructor.
|
||||
right. intro I. inversion I; subst. apply n0. auto.
|
||||
inversion H. unfold observeA in *. destruct H0 as [HH HHH].
|
||||
apply (not_elem_of_empty x); assumption.
|
||||
right. intro. inversion H; subst. apply n0. auto.
|
||||
inversion H0. unfold alterA, observeA in *. destruct H1.
|
||||
apply (not_elem_of_empty x); assumption.
|
||||
- destruct (decide (i = m)); subst. left. right. unfold interference.
|
||||
simpl. exists m. split; apply elem_of_singleton; auto.
|
||||
right. intro. inversion H; subst. inversion H0. simpl in H1.
|
||||
destruct H1. apply elem_of_singleton in H1; apply elem_of_singleton in H2. subst. apply n;auto.
|
||||
- right. intro. inversion H;subst. inversion H0; subst.
|
||||
simpl in H1; inversion H1. apply (not_elem_of_empty x); assumption.
|
||||
- destruct (decide (i = m)); subst.
|
||||
left. constructor.
|
||||
right. intro. inversion H; subst. auto.
|
||||
inversion H0; subst. simpl in H1; inversion H1. eapply not_elem_of_empty. eassumption.
|
||||
- intros v w.
|
||||
destruct v as [i j | i]; destruct w as [m n | m].
|
||||
+ destruct (decide (i = m)). destruct (decide (j = n)); subst; auto.
|
||||
left. constructor.
|
||||
right. intro I. inversion I; subst. apply n0. auto.
|
||||
inversion H. unfold observeA in *. destruct H0 as [HH HHH].
|
||||
apply (not_elem_of_empty x HHH).
|
||||
right. intro. inversion H; subst. apply n0. auto.
|
||||
inversion H0. unfold alterA, observeA in *. destruct H1 as [HH HHH].
|
||||
apply (not_elem_of_empty x HHH).
|
||||
+ destruct (decide (i = m)); subst. left. right. unfold interference.
|
||||
simpl. exists m. split; apply elem_of_singleton; auto.
|
||||
right. intro. inversion H; subst. inversion H0. simpl in H1.
|
||||
destruct H1. apply elem_of_singleton in H1; apply elem_of_singleton in H2. subst. apply n;auto.
|
||||
+ right. intro. inversion H;subst. inversion H0; subst.
|
||||
simpl in H1; inversion H1. eapply (not_elem_of_empty x); eassumption.
|
||||
+ destruct (decide (i = m)); subst.
|
||||
left. constructor.
|
||||
right. intro. inversion H; subst. auto.
|
||||
inversion H0; subst. simpl in H1; inversion H1.
|
||||
eapply (not_elem_of_empty x); eassumption.
|
||||
- intro u. constructor.
|
||||
Defined.
|
||||
|
||||
Check RefMonAssumptions.
|
||||
|
||||
Instance rma_yay : RefMonAssumptions.
|
||||
Proof. split; simpl; unfold RMA_partition; intros;
|
||||
unfold contents in *; simpl in H8.
|
||||
unfold output.
|
||||
unfold preform. destruct a as [i j | i]; simpl in *. reflexivity.
|
||||
apply H8. apply elem_of_singleton. reflexivity.
|
||||
|
||||
unfold step, preform. destruct a as [i j | i]. simpl in *.
|
||||
destruct (decide (i = n)); subst; unfold extendS; simpl.
|
||||
replace (beq_nat n n) with true; auto. apply beq_nat_refl.
|
||||
destruct H9.
|
||||
unfold step in H9; simpl in H9. unfold extendS in H9; simpl in H9.
|
||||
replace (beq_nat n i) with false in *; auto.
|
||||
congruence. SearchAbout beq_nat false. symmetry. apply beq_nat_false_iff. omega.
|
||||
unfold step in H9; simpl in H9. unfold extendS in H9; simpl in H9.
|
||||
replace (beq_nat n i) with false in *; auto.
|
||||
congruence. symmetry. apply beq_nat_false_iff. omega.
|
||||
Proof.
|
||||
split; simpl; unfold RMA_partition.
|
||||
- intros a s t Hst;
|
||||
unfold contents in *; simpl in *.
|
||||
unfold output.
|
||||
unfold preform. destruct a as [i j | i]; simpl in *. reflexivity.
|
||||
apply Hst. eapply elem_of_singleton. reflexivity.
|
||||
- intros a s t n Hst Hn.
|
||||
unfold step, preform. destruct a as [i j | i]. simpl in *.
|
||||
destruct (decide (i = n)); subst; unfold extendS; simpl.
|
||||
replace (beq_nat n n) with true; auto. apply beq_nat_refl.
|
||||
destruct Hn as [Hn|Hn].
|
||||
unfold step in Hn; simpl in Hn. unfold extendS in Hn; simpl in Hn.
|
||||
replace (beq_nat n i) with false in *; auto.
|
||||
congruence. symmetry. apply beq_nat_false_iff. omega.
|
||||
unfold step in Hn; simpl in Hn. unfold extendS in Hn; simpl in Hn.
|
||||
replace (beq_nat n i) with false in *; auto.
|
||||
congruence. symmetry. apply beq_nat_false_iff. omega.
|
||||
|
||||
simpl. destruct H9; unfold step, preform in H9; simpl in H9;
|
||||
simpl. destruct Hn as [Hn|Hn]; unfold step, preform in Hn; simpl in Hn;
|
||||
congruence.
|
||||
|
||||
unfold step, preform in H8; simpl in H8. destruct a; simpl in *.
|
||||
unfold extendS in H8. destruct (decide (n = n0)); subst.
|
||||
apply elem_of_singleton; auto. replace (beq_nat n n0) with false in *; try (congruence). symmetry. apply beq_nat_false_iff. assumption.
|
||||
- intros a s n Hst.
|
||||
unfold step, preform in Hst; simpl in Hst. destruct a; simpl in *.
|
||||
unfold extendS in Hst. destruct (decide (n = n0)); subst.
|
||||
apply elem_of_singleton; auto. replace (beq_nat n n0) with false in *; try (congruence). symmetry. apply beq_nat_false_iff. assumption.
|
||||
congruence.
|
||||
Defined.
|
||||
|
||||
|
@ -125,4 +143,3 @@ Proof.
|
|||
apply rma_secure_intransitive.
|
||||
intros u v n A1 A2. simpl. right. firstorder.
|
||||
Qed.
|
||||
|
||||
|
|
136
Rushby.v
136
Rushby.v
|
@ -1,24 +1,11 @@
|
|||
(** Formalisation of "Noninterference, Transitivity, and Channel-Control Security Policies" by J. Rushby
|
||||
(** Formalisation of "Noninterference, Transitivity, and Channel-Control Security Policies" by J. Rushby
|
||||
www.csl.sri.com/papers/csl-92-2/
|
||||
*)
|
||||
|
||||
(** printing -> #→# *)
|
||||
(** printing (policy a b) #a ⇝ b# *)
|
||||
|
||||
From stdpp Require Import list relations collections fin_collections.
|
||||
Parameter FinSet : Type -> Type.
|
||||
(** begin hide **)
|
||||
Context `{forall A, ElemOf A (FinSet A)}.
|
||||
Context `{forall A, Empty (FinSet A)}.
|
||||
Context `{forall A, Singleton A (FinSet A)}.
|
||||
Context `{forall A, Union (FinSet A)}.
|
||||
Context `{forall A, Intersection (FinSet A)}.
|
||||
Context `{forall A, Difference (FinSet A)}.
|
||||
Context `{forall A, Elements A (FinSet A)}.
|
||||
Context `{forall A, Collection A (FinSet A)}.
|
||||
(* TODO: i wrote this line down so that there is a Collection -> SimpleCollection -> JoinSemiLattice instance for FinSet; how come this is not automatically picked up by the next assumption? *)
|
||||
Context `{forall A (H : EqDecision A), FinCollection A (FinSet A)}.
|
||||
(** end hide **)
|
||||
From stdpp Require Import list relations gmap sets fin_sets.
|
||||
|
||||
(** * Mealy machines *)
|
||||
|
||||
|
@ -46,10 +33,10 @@ Fixpoint run `{Mealy state action out} (s : state) (ls : list action) : state :=
|
|||
Definition do_actions `{Mealy state action out} : list action -> state := run initial.
|
||||
|
||||
(** The [test] function runs the required list of actions and examines the output of the resulting state on a specified action. *)
|
||||
Definition test `{Mealy state action out} (ls : list action) : action -> out := output (do_actions ls).
|
||||
Definition test `{Mealy state action out} (ls : list action) : action -> out := output (do_actions ls).
|
||||
|
||||
Section Rushby.
|
||||
|
||||
|
||||
(** We assume for the rest of the formalisation that we have a Mealy
|
||||
machine [M]. Thus, we parameterize our main development module by a machine [M]. *)
|
||||
|
||||
|
@ -73,6 +60,7 @@ Class Policy (domain : Type) := {
|
|||
instances. *)
|
||||
|
||||
domain_dec :> EqDecision domain;
|
||||
domain_countable :> Countable domain;
|
||||
policy :> relation domain;
|
||||
policy_dec :> RelDecision policy;
|
||||
policy_refl :> Reflexive policy
|
||||
|
@ -83,7 +71,7 @@ Delimit Scope policy_scope with P.
|
|||
Open Scope policy_scope.
|
||||
Infix "⇝" := policy (at level 70) : policy_scope.
|
||||
|
||||
(** Quoting Rushby:
|
||||
(** Quoting Rushby:
|
||||
|
||||
<<
|
||||
We wish to define security in terms of information flow, so the
|
||||
|
@ -136,10 +124,10 @@ Section view_partitions.
|
|||
|
||||
(** Formally, a view partition is an assignment of an equivalence
|
||||
relation [≈{u}] for every domain [u] *)
|
||||
|
||||
|
||||
Class ViewPartition (domain : Type) := {
|
||||
view_partition :> domain -> relation state;
|
||||
view_partition_is_equiv :> forall v, Equivalence (view_partition v)
|
||||
view_partition_is_equiv :> forall v, Equivalence (view_partition v);
|
||||
}.
|
||||
|
||||
Notation "S ≈{ U } T" := (view_partition U S T)
|
||||
|
@ -149,7 +137,7 @@ Open Scope policy_scope.
|
|||
states [s, t] that are indistinguishable w.r.t. the domain [dom a],
|
||||
the output of the system [output s a] is the same as [output t a] *)
|
||||
|
||||
Class OutputConsistent `{P : Policy domain} `(ViewPartition domain) :=
|
||||
Class OutputConsistent `{P : Policy domain} `(ViewPartition domain) :=
|
||||
output_consistent : (forall a s t, s ≈{dom a} t -> output s a = output t a).
|
||||
|
||||
(** Our first lemma states that if we have a view partitioned system
|
||||
|
@ -195,15 +183,15 @@ Theorem unwinding `{P: Policy domain} `{VP: ViewPartition domain} `{@OutputConsi
|
|||
Proof.
|
||||
intros LRP SC. apply output_consist_security.
|
||||
assert (forall ls u s t, view_partition u s t -> view_partition u (run s ls) (run t (purge ls u))) as General. (* TODO: a simple generalize would not suffice, because we actually need the s ≈ t assumption *)
|
||||
induction ls; simpl; auto.
|
||||
induction ls; simpl; auto.
|
||||
intros u s t HI.
|
||||
destruct (decide (policy (dom a) u)).
|
||||
(* DOESNT WORK (Lexer) : destruct (decide ((dom a) ⇝ u)). *)
|
||||
(** Case [(dom a) ~> u] *)
|
||||
(** Case [(dom a) ~> u] *)
|
||||
apply IHls. apply SC; assumption.
|
||||
(** Case [(dom a) ~/> u] *)
|
||||
apply IHls.
|
||||
transitivity s. symmetry. unfold locally_respects_policy in LRP. apply LRP; assumption. assumption.
|
||||
(** Case [(dom a) ~/> u] *)
|
||||
apply IHls.
|
||||
transitivity s. symmetry. unfold locally_respects_policy in LRP. apply LRP; assumption. assumption.
|
||||
unfold do_actions. intros ls u. apply General. reflexivity.
|
||||
Qed.
|
||||
|
||||
|
@ -213,7 +201,7 @@ End view_partitions.
|
|||
|
||||
Section ACI.
|
||||
|
||||
(** In this section we consider a formalisation of the access control mechansisms.
|
||||
(** In this section we consider a formalisation of the access control mechansisms.
|
||||
|
||||
We say that the machine has _structured state_ if we have a collection
|
||||
of [name]s and [value]s (the latter being decidable), and some sort of
|
||||
|
@ -227,8 +215,10 @@ Class StructuredState (domain : Type) := {
|
|||
value : Type;
|
||||
contents : state -> name -> value;
|
||||
value_dec :> EqDecision value;
|
||||
observe : domain -> FinSet name;
|
||||
alter : domain -> FinSet name
|
||||
name_dec :> EqDecision name;
|
||||
name_countable :> Countable name;
|
||||
observe : domain -> gset name;
|
||||
alter : domain -> gset name
|
||||
}.
|
||||
|
||||
(** This induces the view partition relation as follows: two state [s]
|
||||
|
@ -240,13 +230,15 @@ Definition RMA_partition `{@StructuredState domain} (u : domain) s t := (forall
|
|||
|
||||
Transparent RMA_partition.
|
||||
|
||||
Instance RMA `{@StructuredState domain} : ViewPartition domain := { view_partition := RMA_partition }.
|
||||
Instance RMA `{!StructuredState domain}
|
||||
`{!EqDecision domain, !Countable domain}
|
||||
: ViewPartition domain := { view_partition := RMA_partition }.
|
||||
(* begin hide *)
|
||||
intro u. split; unfold RMA_partition.
|
||||
(* Reflexivity *) unfold Reflexive. auto.
|
||||
(* Symmetry *) unfold Symmetric. intros x y Sy.
|
||||
intro u. split; try apply _; unfold RMA_partition.
|
||||
(* Reflexivity *) - unfold Reflexive. auto.
|
||||
(* Symmetry *) - unfold Symmetric. intros x y Sy.
|
||||
symmetry. apply Sy. assumption.
|
||||
(* Transitivity *) unfold Transitive. intros x y z T1 T2 n.
|
||||
- (* Transitivity *) unfold Transitive. intros x y z T1 T2 n.
|
||||
transitivity (contents y n); [apply T1 | apply T2]; assumption.
|
||||
Defined. (* We have to use 'Defined' here instead of 'Qed' so that we can unfold 'RMA' later on *)
|
||||
(* end hide *)
|
||||
|
@ -255,18 +247,20 @@ Hint Resolve RMA.
|
|||
|
||||
(** ** Reference monitor assumptions *)
|
||||
(* TODO: explain those assumptions *)
|
||||
Class RefMonAssumptions `{Policy domain} `{StructuredState domain} :=
|
||||
{ rma1 : forall (a : action) s t,
|
||||
view_partition (dom a) s t -> output s a = output t a
|
||||
; rma2 : forall a s t n,
|
||||
view_partition (dom a) s t ->
|
||||
((contents (step s a) n) ≠ (contents s n)
|
||||
∨ (contents (step t a) n) ≠ (contents t n))
|
||||
-> contents (step s a) n = contents (step t a) n
|
||||
; rma3 : forall a s n,
|
||||
contents (step s a) n ≠ contents s n -> n ∈ alter (dom a)
|
||||
}.
|
||||
|
||||
Class RefMonAssumptions `{!Policy domain, !StructuredState domain} :=
|
||||
{ rma1 :
|
||||
forall (a : action) s t,
|
||||
view_partition (dom a) s t -> output s a = output t a;
|
||||
rma2 :
|
||||
forall a s t n,
|
||||
view_partition (dom a) s t ->
|
||||
((contents (step s a) n) ≠ (contents s n)
|
||||
∨ (contents (step t a) n) ≠ (contents t n))
|
||||
-> contents (step s a) n = contents (step t a) n;
|
||||
rma3 :
|
||||
forall a s n, contents (step s a) n ≠ contents s n -> n ∈ alter (dom a)
|
||||
}.
|
||||
|
||||
(** If the reference monitor assumptions are satisfied, then the system is output-consistent *)
|
||||
Global Instance OC `{RefMonAssumptions}: OutputConsistent RMA.
|
||||
exact rma1. Defined.
|
||||
|
@ -278,15 +272,15 @@ exact rma1. Defined.
|
|||
*)
|
||||
|
||||
(* Theorem 2 *)
|
||||
Theorem RMA_secutity `{RefMonAssumptions} :
|
||||
Theorem RMA_secutity `{RefMonAssumptions} :
|
||||
(forall u v, (policy u v) → observe u ⊆ observe v)
|
||||
-> (forall u v n, (n ∈ alter u) → (n ∈ observe v) → (policy u v))
|
||||
-> security.
|
||||
Proof.
|
||||
intros Cond1 Cond2. apply unwinding.
|
||||
intros Cond1 Cond2. apply unwinding.
|
||||
(** We apply the unwinding theorem, so we have to verify that
|
||||
we locally respect policy and that we have step-consistency *)
|
||||
unfold locally_respects_policy.
|
||||
we locally respect policy and that we have step-consistency *)
|
||||
unfold locally_respects_policy.
|
||||
intros a u s.
|
||||
|
||||
(** In order to prove that the system locally respects the policy
|
||||
|
@ -297,7 +291,7 @@ Proof.
|
|||
intros opH. destruct opH as [n [??]].
|
||||
eapply Cond2. eapply rma3. eauto. assumption.
|
||||
intros NPolicy.
|
||||
unfold view_partition, RMA, RMA_partition.
|
||||
unfold view_partition, RMA, RMA_partition.
|
||||
(* TODO: why can't decide automatically pick the instance value_dec? *)
|
||||
intros. destruct (decide (contents s n = contents (step s a) n)) as [e|Ne]. assumption. exfalso. apply NPolicy. apply CP.
|
||||
exists n; split; assumption.
|
||||
|
@ -317,7 +311,7 @@ Proof.
|
|||
(* We use the Second RM assmption to deal with this case *)
|
||||
apply rma2. (* for this we have to show that s ~_(dom a) t *)
|
||||
unfold view_partition, RMA, RMA_partition.
|
||||
intros m L. apply A.
|
||||
intros m L. apply A.
|
||||
apply Cond1 with (u:=dom a).
|
||||
apply Cond2 with (n:=n); [eapply rma3 | ]; eassumption.
|
||||
assumption.
|
||||
|
@ -326,7 +320,7 @@ Proof.
|
|||
(* TODO: repetition *)
|
||||
apply rma2. (* for this we have to show that s ~_(dom a) t *)
|
||||
unfold view_partition, RMA, RMA_partition.
|
||||
intros m L. apply A.
|
||||
intros m L. apply A.
|
||||
apply Cond1 with (u:=dom a).
|
||||
apply Cond2 with (n:=n); [eapply rma3| ]; eassumption.
|
||||
assumption.
|
||||
|
@ -339,7 +333,7 @@ End ACI.
|
|||
Section Intransitive.
|
||||
|
||||
(** Auxiliary definitions *)
|
||||
Fixpoint sources `{Policy domain} (ls : list action) (d : domain) : FinSet domain :=
|
||||
Fixpoint sources `{Policy domain} (ls : list action) (d : domain) : gset domain :=
|
||||
match ls with
|
||||
| [] => {[ d ]}
|
||||
| a::tl => let src := sources tl d in
|
||||
|
@ -351,7 +345,7 @@ Fixpoint sources `{Policy domain} (ls : list action) (d : domain) : FinSet domai
|
|||
Lemma sources_mon `{Policy} : forall a ls d, sources ls d ⊆ sources (a::ls) d.
|
||||
Proof.
|
||||
intros. simpl.
|
||||
destruct (decide _); [apply union_subseteq_l |]; auto.
|
||||
destruct (decide _); [apply union_subseteq_l |]; auto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve sources_mon.
|
||||
|
@ -360,12 +354,12 @@ Lemma sources_monotone `{Policy} : forall ls js d, sublist ls js → sources ls
|
|||
Proof.
|
||||
intros ls js d M.
|
||||
induction M. simpl. reflexivity.
|
||||
simpl. destruct (decide (∃ v : domain, v ∈ sources l1 d ∧ policy (dom x) v)); destruct (decide (∃ v : domain, v ∈ sources l2 d ∧ policy (dom x) v)).
|
||||
simpl. destruct (decide (∃ v : domain, v ∈ sources l1 d ∧ policy (dom x) v)); destruct (decide (∃ v : domain, v ∈ sources l2 d ∧ policy (dom x) v)).
|
||||
- apply union_mono_r. assumption.
|
||||
- exfalso. apply n. destruct e as [v [e1 e2]]. exists v; split; try (apply (IHM v)); assumption.
|
||||
- transitivity (sources l2 d). assumption. apply union_subseteq_l.
|
||||
- assumption.
|
||||
- transitivity (sources l2 d); auto.
|
||||
- transitivity (sources l2 d); auto.
|
||||
Qed.
|
||||
|
||||
Lemma sources_in `{Policy} : forall ls d, d ∈ sources ls d.
|
||||
|
@ -408,9 +402,13 @@ Proof.
|
|||
apply (H ls (dom a)).
|
||||
Qed.
|
||||
|
||||
Definition view_partition_general `{ViewPartition domain} (C : FinSet domain) s t := forall (u: domain), u ∈ C -> view_partition u s t.
|
||||
Definition view_partition_general
|
||||
`{!ViewPartition domain, !EqDecision domain, !Countable domain}
|
||||
(C : gset domain) s t
|
||||
:= forall (u: domain), u ∈ C -> view_partition u s t.
|
||||
|
||||
Global Instance view_partition_general_equiv `{ViewPartition domain}:
|
||||
Global Instance view_partition_general_equiv
|
||||
`{ViewPartition domain, !EqDecision domain, !Countable domain}:
|
||||
forall V, Equivalence (view_partition_general V).
|
||||
Proof.
|
||||
intro V. split.
|
||||
|
@ -422,10 +420,10 @@ Qed.
|
|||
Definition weakly_step_consistent `{Policy domain} `{ViewPartition domain} :=
|
||||
forall s t u a, view_partition u s t -> view_partition (dom a) s t -> view_partition u (step s a) (step t a).
|
||||
|
||||
Ltac exists_inside v :=
|
||||
Ltac exists_inside v :=
|
||||
let H := fresh "Holds" in
|
||||
let nH := fresh "notHolds" in
|
||||
destruct (decide _) as [H | []];
|
||||
destruct (decide _) as [H | []];
|
||||
[ try reflexivity | exists v; try auto].
|
||||
|
||||
Local Hint Resolve sources_mon.
|
||||
|
@ -436,7 +434,7 @@ Local Hint Resolve elem_of_union.
|
|||
|
||||
(* Lemma 3 *)
|
||||
Lemma weakly_step_consistent_general `{Policy domain} `{ViewPartition domain} (s t : state) (a : action) ls (u: domain) : weakly_step_consistent -> locally_respects_policy ->
|
||||
view_partition_general (sources (a::ls) u) s t
|
||||
view_partition_general (sources (a::ls) u) s t
|
||||
-> view_partition_general (sources ls u) (step s a) (step t a).
|
||||
Proof.
|
||||
intros WSC LRP P v vIn.
|
||||
|
@ -444,12 +442,12 @@ Proof.
|
|||
unfold locally_respects_policy in LRP.
|
||||
destruct (decide (policy (dom a) v)).
|
||||
(* Case [dom a ~> v] *)
|
||||
apply WSC; apply P. auto.
|
||||
(* we need to show that [dom a ∈ sources (a::ls) v] *)
|
||||
apply WSC; apply P. auto.
|
||||
(* we need to show that [dom a ∈ sources (a::ls) v] *)
|
||||
simpl. exists_inside v. apply elem_of_union. right. auto. apply elem_of_singleton; trivial.
|
||||
(* Case [dom a ~/> v] *)
|
||||
transitivity s. symmetry. apply LRP; assumption.
|
||||
transitivity t. apply P. auto.
|
||||
transitivity t. apply P. auto.
|
||||
apply LRP; assumption.
|
||||
Qed.
|
||||
|
||||
|
@ -476,14 +474,14 @@ Proof.
|
|||
induction ls; intros s t.
|
||||
simpl. intro A. apply (A u). apply elem_of_singleton; reflexivity.
|
||||
intro VPG. simpl. unfold sources. fold (sources (a::ls) u).
|
||||
|
||||
|
||||
destruct (decide _).
|
||||
(** Case [dom a ∈ sources (a::ls) u] *)
|
||||
simpl. apply IHls. apply weakly_step_consistent_general; auto.
|
||||
(** Case [dom a ∉ sources (a::ls) u] *)
|
||||
apply IHls. symmetry. transitivity t.
|
||||
apply IHls. symmetry. transitivity t.
|
||||
- intros v vIn. symmetry. apply VPG. apply sources_mon; exact vIn.
|
||||
- apply locally_respects_gen; try(assumption).
|
||||
- apply locally_respects_gen; try(assumption).
|
||||
Qed.
|
||||
|
||||
|
||||
|
@ -503,7 +501,7 @@ Proof. intro policyA.
|
|||
unfold view_partition. unfold RMA_partition; simpl. intros n L.
|
||||
destruct (decide (contents (step s a) n = contents s n)) as [E1 | NE1].
|
||||
destruct (decide (contents (step t a) n = contents t n)) as [E2 | NE2].
|
||||
(* Case [contents (step s a) n = contents s n /\ contents (step t a) n = contents t n] *)
|
||||
(* Case [contents (step s a) n = contents s n /\ contents (step t a) n = contents t n] *)
|
||||
rewrite E1, E2. apply A1; assumption.
|
||||
(* Case [contents (step t a) n ≠ contents t n] *)
|
||||
apply rma2; [ | right]; assumption.
|
||||
|
|
|
@ -1,2 +1,3 @@
|
|||
-R . ""
|
||||
-R . NI
|
||||
Rushby.v
|
||||
ArrayMachine.v
|
Loading…
Reference in New Issue