HITs-Examples/FiniteSets/fsets/properties.v

155 lines
3.9 KiB
Coq
Raw Normal View History

Require Import HoTT HitTactics.
Require Export representations.definition disjunction fsets.operations.
2017-05-23 16:30:31 +02:00
(* Lemmas relating operations to the membership predicate *)
Section operations_isIn.
2017-08-03 12:21:34 +02:00
Context {A : Type}.
Context `{Univalence}.
Lemma union_idem : forall x: FSet A, U x x = x.
Proof.
hinduction;
try (intros ; apply set_path2).
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
f_ap.
Qed.
(** ** Properties about subset relation. *)
Lemma subset_union (X Y : FSet A) :
subset X Y -> U X Y = Y.
Proof.
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
- intros. apply nl.
- intros a. hinduction Y;
try (intros; apply path_forall; intro; apply set_path2).
+ intro.
contradiction.
+ intro a0.
simple refine (Trunc_ind _ _).
intro p ; simpl.
rewrite p; apply idem.
+ intros X1 X2 IH1 IH2.
simple refine (Trunc_ind _ _).
intros [e1 | e2].
++ rewrite assoc.
rewrite (IH1 e1).
reflexivity.
++ rewrite comm.
rewrite <- assoc.
rewrite (comm X2).
rewrite (IH2 e2).
reflexivity.
- intros X1 X2 IH1 IH2 [G1 G2].
rewrite <- assoc.
rewrite (IH2 G2).
apply (IH1 G1).
Defined.
Lemma subset_union_l (X : FSet A) :
forall Y, subset X (U X Y).
Proof.
hinduction X ;
try (repeat (intro; intros; apply path_forall); intro; apply equiv_hprop_allpath ; apply _).
- apply (fun _ => tt).
- intros a Y.
apply tr ; left ; apply tr ; reflexivity.
- intros X1 X2 HX1 HX2 Y.
split.
* rewrite <- assoc. apply HX1.
* rewrite (comm X1 X2). rewrite <- assoc. apply HX2.
Defined.
(* Union and membership *)
Lemma union_isIn (X Y : FSet A) (a : A) :
isIn a (U X Y) = isIn a X isIn a Y.
Proof.
reflexivity.
Defined.
Lemma comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
- apply (union_idem _)^.
- intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply union_idem.
* apply nr.
* apply nl.
* apply union_idem.
- simpl. intros x y P Q.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
2017-05-23 16:30:31 +02:00
End operations_isIn.
(* Other properties *)
Section properties.
2017-08-03 12:21:34 +02:00
Context {A : Type}.
Context `{Univalence}.
(** isIn properties *)
Lemma singleton_isIn (a b: A) : isIn a (L b) -> Trunc (-1) (a = b).
Proof.
apply idmap.
Defined.
Lemma empty_isIn (a: A) : isIn a E -> Empty.
Proof.
apply idmap.
Defined.
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
Proof.
hrecursion Y; try (intros; apply set_path2).
- reflexivity.
- reflexivity.
- intros x y IHa IHb.
rewrite IHa.
rewrite IHb.
apply union_idem.
Defined.
Lemma comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
Proof.
intros ϕ.
hrecursion; try (intros ; apply set_path2) ; cbn.
- apply union_idem.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite Q.
reflexivity.
Defined.
2017-05-23 16:30:31 +02:00
End properties.