2017-08-09 16:01:35 +02:00
|
|
|
|
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
2017-08-16 17:01:25 +02:00
|
|
|
|
Require Import HoTT HitTactics.
|
2017-08-10 17:33:56 +02:00
|
|
|
|
Require Import Sub notation variations.k_finite.
|
|
|
|
|
Require Import fsets.properties.
|
2017-08-09 16:01:35 +02:00
|
|
|
|
|
|
|
|
|
Section finite_hott.
|
2017-08-16 15:59:36 +02:00
|
|
|
|
Variable (A : Type).
|
2017-08-09 16:01:35 +02:00
|
|
|
|
Context `{Univalence} `{IsHSet A}.
|
|
|
|
|
|
|
|
|
|
(* A subobject is B-finite if its extension is B-finite as a type *)
|
|
|
|
|
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
|
|
|
|
|
|
|
|
|
Global Instance singleton_contr a : Contr {b : A & b ∈ {|a|}}.
|
|
|
|
|
Proof.
|
|
|
|
|
exists (a; tr idpath).
|
|
|
|
|
intros [b p].
|
|
|
|
|
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
|
|
|
|
|
clear p; intro p. simpl.
|
|
|
|
|
apply path_sigma' with (p^).
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b ∈ {|a|}}.
|
|
|
|
|
Proof.
|
|
|
|
|
intros _. apply (center {b : A & b ∈ {|a|}}).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
|
|
|
|
|
Proof. apply _. Defined.
|
|
|
|
|
|
|
|
|
|
Definition singleton : closedSingleton Bfin.
|
|
|
|
|
Proof.
|
|
|
|
|
intros a.
|
|
|
|
|
simple refine (Build_Finite _ 1 _).
|
|
|
|
|
apply tr.
|
|
|
|
|
symmetry.
|
|
|
|
|
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition empty_finite : closedEmpty Bfin.
|
|
|
|
|
Proof.
|
|
|
|
|
simple refine (Build_Finite _ 0 _).
|
|
|
|
|
apply tr.
|
|
|
|
|
simple refine (BuildEquiv _ _ _ _).
|
|
|
|
|
intros [a p]; apply p.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
|
|
|
|
|
Proof.
|
|
|
|
|
intros X Y.
|
|
|
|
|
destruct Y as [n Xn].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Xn as [f [g fg gf adj]].
|
|
|
|
|
destruct n.
|
|
|
|
|
- refine (tr(inl _)).
|
|
|
|
|
apply path_forall. intro z.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
* intros p.
|
|
|
|
|
contradiction (f (z;p)).
|
|
|
|
|
* contradiction.
|
|
|
|
|
- refine (tr(inr _)).
|
|
|
|
|
apply (tr(g(inr tt))).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma no_union
|
|
|
|
|
(f : forall (X Y : Sub A),
|
|
|
|
|
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
|
|
|
|
(a b : A) :
|
|
|
|
|
hor (a = b) (a = b -> Empty).
|
|
|
|
|
Proof.
|
|
|
|
|
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
|
|
|
|
unfold Bfin in f.
|
|
|
|
|
destruct f as [n pn].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct pn as [f [g fg gf _]].
|
|
|
|
|
destruct n as [|n].
|
|
|
|
|
unfold Sect in *.
|
|
|
|
|
- contradiction f.
|
|
|
|
|
exists a. apply (tr(inl(tr idpath))).
|
|
|
|
|
- destruct n as [|n].
|
|
|
|
|
+ (* If the size of the union is 1, then (a = b) *)
|
|
|
|
|
refine (tr (inl _)).
|
|
|
|
|
pose (s1 := (a;tr(inl(tr idpath)))
|
|
|
|
|
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
|
|
|
|
pose (s2 := (b;tr(inr(tr idpath)))
|
|
|
|
|
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
|
|
|
|
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
|
|
|
|
assert (fs_eq : f s1 = f s2).
|
|
|
|
|
{ by apply path_ishprop. }
|
|
|
|
|
refine (ap (fun x => (g x).1) fs_eq).
|
|
|
|
|
+ (* Otherwise, ¬(a = b) *)
|
|
|
|
|
refine (tr (inr _)).
|
|
|
|
|
intros p.
|
|
|
|
|
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
|
|
|
|
pose (s2 := inr tt : Fin n + Unit + Unit).
|
|
|
|
|
pose (gs1 := g s1).
|
|
|
|
|
pose (c := g s1).
|
|
|
|
|
pose (gs2 := g s2).
|
|
|
|
|
pose (d := g s2).
|
|
|
|
|
assert (Hgs1 : gs1 = c) by reflexivity.
|
|
|
|
|
assert (Hgs2 : gs2 = d) by reflexivity.
|
|
|
|
|
destruct c as [x px'].
|
|
|
|
|
destruct d as [y py'].
|
|
|
|
|
simple refine (Trunc_ind _ _ px') ; intros px.
|
|
|
|
|
simple refine (Trunc_ind _ _ py') ; intros py.
|
|
|
|
|
simpl.
|
|
|
|
|
cut (x = y).
|
|
|
|
|
{
|
|
|
|
|
enough (s1 = s2) as X.
|
|
|
|
|
{
|
|
|
|
|
intros.
|
|
|
|
|
unfold s1, s2 in X.
|
|
|
|
|
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
|
|
|
|
+ apply tt.
|
|
|
|
|
+ rewrite X ; apply tt.
|
|
|
|
|
}
|
|
|
|
|
transitivity (f gs1).
|
|
|
|
|
{ apply (fg s1)^. }
|
|
|
|
|
symmetry ; transitivity (f gs2).
|
|
|
|
|
{ apply (fg s2)^. }
|
|
|
|
|
rewrite Hgs1, Hgs2.
|
|
|
|
|
f_ap.
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
|
|
|
|
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
|
|
|
|
|
* apply (p2 @ p1^).
|
|
|
|
|
* refine (p2 @ _^ @ p1^). auto.
|
|
|
|
|
* refine (p2 @ _ @ p1^). auto.
|
|
|
|
|
* apply (p2 @ p1^).
|
|
|
|
|
}
|
|
|
|
|
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
|
|
|
|
|
** apply (px @ py^).
|
|
|
|
|
** refine (px @ _ @ py^). auto.
|
|
|
|
|
** refine (px @ _ @ py^). symmetry. auto.
|
|
|
|
|
** apply (px @ py^).
|
|
|
|
|
Defined.
|
2017-08-10 17:33:56 +02:00
|
|
|
|
|
|
|
|
|
Section empty.
|
|
|
|
|
Variable (X : A -> hProp)
|
|
|
|
|
(Xequiv : {a : A & a ∈ X} <~> Fin 0).
|
|
|
|
|
|
|
|
|
|
Lemma X_empty : X = ∅.
|
|
|
|
|
Proof.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro z.
|
|
|
|
|
apply path_iff_hprop ; try contradiction.
|
|
|
|
|
intro x.
|
|
|
|
|
destruct Xequiv as [f fequiv].
|
|
|
|
|
contradiction (f(z;x)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End empty.
|
|
|
|
|
|
|
|
|
|
Section split.
|
|
|
|
|
Variable (X : A -> hProp)
|
|
|
|
|
(n : nat)
|
|
|
|
|
(Xequiv : {a : A & a ∈ X} <~> Fin n + Unit).
|
|
|
|
|
|
|
|
|
|
Definition split : {X' : A -> hProp & {a : A & a ∈ X'} <~> Fin n}.
|
|
|
|
|
Proof.
|
|
|
|
|
destruct Xequiv as [f [g fg gf adj]].
|
|
|
|
|
unfold Sect in *.
|
|
|
|
|
pose (fun x : A => sig (fun y : Fin n => x = (g(inl y)).1 )) as X'.
|
|
|
|
|
assert (forall a : A, IsHProp (X' a)).
|
|
|
|
|
{
|
|
|
|
|
intros.
|
|
|
|
|
unfold X'.
|
|
|
|
|
apply hprop_allpath.
|
|
|
|
|
intros [x px] [y py].
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _).
|
|
|
|
|
* cbn.
|
|
|
|
|
pose (f(g(inl x))) as fgx.
|
|
|
|
|
cut (g(inl x) = g(inl y)).
|
|
|
|
|
{
|
|
|
|
|
intros q.
|
|
|
|
|
pose (ap f q).
|
|
|
|
|
rewrite !fg in p.
|
|
|
|
|
refine (path_sum_inl _ p).
|
|
|
|
|
}
|
|
|
|
|
apply path_sigma with (px^ @ py).
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
* apply path_ishprop.
|
|
|
|
|
}
|
|
|
|
|
pose (fun a => BuildhProp(X' a)) as Y.
|
|
|
|
|
exists Y.
|
|
|
|
|
unfold Y, X'.
|
|
|
|
|
cbn.
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
- intros [a [y p]]. apply y.
|
|
|
|
|
- apply isequiv_biinv.
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
|
|
|
|
|
unfold Sect.
|
|
|
|
|
intros [a [y p]].
|
|
|
|
|
apply path_sigma with p^.
|
|
|
|
|
simpl.
|
|
|
|
|
rewrite transport_sigma.
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _) ; simpl.
|
|
|
|
|
** rewrite transport_const ; reflexivity.
|
|
|
|
|
** apply path_ishprop.
|
|
|
|
|
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
|
|
|
|
|
unfold Sect.
|
|
|
|
|
intros x.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition new_el : {a' : A & forall z, X z =
|
|
|
|
|
lor (split.1 z) (merely (z = a'))}.
|
|
|
|
|
Proof.
|
|
|
|
|
exists ((Xequiv^-1 (inr tt)).1).
|
|
|
|
|
intros.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
- intros Xz.
|
|
|
|
|
pose (Xequiv (z;Xz)) as fz.
|
|
|
|
|
pose (c := fz).
|
|
|
|
|
assert (c = fz). reflexivity.
|
|
|
|
|
destruct c as [fz1 | fz2].
|
|
|
|
|
* refine (tr(inl _)).
|
|
|
|
|
unfold split ; simpl.
|
|
|
|
|
exists fz1.
|
|
|
|
|
rewrite X0.
|
|
|
|
|
unfold fz.
|
|
|
|
|
destruct Xequiv as [? [? ? sect ?]].
|
|
|
|
|
compute.
|
|
|
|
|
rewrite sect.
|
|
|
|
|
reflexivity.
|
|
|
|
|
* refine (tr(inr(tr _))).
|
|
|
|
|
destruct fz2.
|
|
|
|
|
rewrite X0.
|
|
|
|
|
unfold fz.
|
|
|
|
|
rewrite eissect.
|
|
|
|
|
reflexivity.
|
|
|
|
|
- intros X0.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X0 as [Xl | Xr].
|
|
|
|
|
* unfold split in Xl ; simpl in Xl.
|
|
|
|
|
destruct Xequiv as [f [g fg gf adj]].
|
|
|
|
|
destruct Xl as [m p].
|
|
|
|
|
rewrite p.
|
|
|
|
|
apply (g (inl m)).2.
|
|
|
|
|
* strip_truncations.
|
|
|
|
|
rewrite Xr.
|
|
|
|
|
apply ((Xequiv^-1(inr tt)).2).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End split.
|
2017-08-16 15:59:36 +02:00
|
|
|
|
End finite_hott.
|
|
|
|
|
|
|
|
|
|
Arguments Bfin {_} _.
|
|
|
|
|
|
2017-08-24 14:37:38 +02:00
|
|
|
|
Section Bfin_not_set.
|
|
|
|
|
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
|
|
|
|
|
Proof.
|
|
|
|
|
exists x.
|
|
|
|
|
simple refine (S1_ind (fun z => merely(z = base)) _ _ x) ; simpl.
|
|
|
|
|
- apply (tr idpath).
|
|
|
|
|
- apply path_ishprop.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Instance S1toSig_equiv : IsEquiv S1toSig.
|
|
|
|
|
Proof.
|
|
|
|
|
apply isequiv_biinv.
|
|
|
|
|
split.
|
|
|
|
|
- exists (fun x => x.1).
|
|
|
|
|
simple refine (S1_ind _ _ _) ; simpl.
|
|
|
|
|
* reflexivity.
|
|
|
|
|
* rewrite transport_paths_FlFr.
|
|
|
|
|
hott_simpl.
|
|
|
|
|
- exists (fun x => x.1).
|
|
|
|
|
intros [z x].
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _) ; simpl.
|
|
|
|
|
* reflexivity.
|
|
|
|
|
* apply path_ishprop.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Theorem no_singleton (Hsing : Bfin {|base|}) : Empty.
|
|
|
|
|
Proof.
|
|
|
|
|
destruct Hsing as [n equiv].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
assert (S1 <~> Fin n) as X.
|
|
|
|
|
{ apply (equiv_compose equiv S1toSig). }
|
|
|
|
|
assert (IsHSet S1) as X1.
|
|
|
|
|
{
|
|
|
|
|
rewrite (path_universe X).
|
|
|
|
|
apply _.
|
|
|
|
|
}
|
|
|
|
|
enough (idpath = loop).
|
|
|
|
|
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
|
|
|
|
|
rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
|
|
|
|
|
apply (pos_neq_zero H').
|
|
|
|
|
- apply set_path2.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End Bfin_not_set.
|
|
|
|
|
|
2017-08-16 15:59:36 +02:00
|
|
|
|
Section dec_membership.
|
|
|
|
|
Variable (A : Type).
|
|
|
|
|
Context `{DecidablePaths A} `{Univalence}.
|
|
|
|
|
Global Instance DecidableMembership (P : Sub A) (Hfin : Bfin P) (a : A) :
|
|
|
|
|
Decidable (a ∈ P).
|
|
|
|
|
Proof.
|
|
|
|
|
destruct Hfin as [n Hequiv].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
revert Hequiv.
|
|
|
|
|
revert P.
|
|
|
|
|
induction n.
|
|
|
|
|
- intros.
|
|
|
|
|
pose (X_empty _ P Hequiv) as p.
|
|
|
|
|
rewrite p.
|
|
|
|
|
apply _.
|
|
|
|
|
- intros.
|
|
|
|
|
pose (new_el _ P n Hequiv) as b.
|
|
|
|
|
destruct b as [b HX'].
|
|
|
|
|
destruct (split _ P n Hequiv) as [X' X'equiv]. simpl in HX'.
|
|
|
|
|
unfold member, sub_membership.
|
|
|
|
|
rewrite (HX' a).
|
|
|
|
|
pose (IHn X' X'equiv) as IH.
|
|
|
|
|
destruct IH as [IH | IH].
|
|
|
|
|
+ left. apply (tr (inl IH)).
|
|
|
|
|
+ destruct (dec (a = b)) as [Hab | Hab].
|
|
|
|
|
left. apply (tr (inr (tr Hab))).
|
|
|
|
|
right. intros α. strip_truncations.
|
|
|
|
|
destruct α as [β | γ]; [ | strip_truncations]; contradiction.
|
|
|
|
|
Defined.
|
|
|
|
|
End dec_membership.
|
|
|
|
|
|
|
|
|
|
Section cowd.
|
|
|
|
|
Variable (A : Type).
|
|
|
|
|
Context `{DecidablePaths A} `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Definition cow := { X : Sub A | Bfin X}.
|
|
|
|
|
Definition empty_cow : cow.
|
|
|
|
|
Proof.
|
|
|
|
|
exists empty. apply empty_finite.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition add_cow : forall a : A, cow -> cow.
|
|
|
|
|
Proof.
|
|
|
|
|
intros a [X PX].
|
|
|
|
|
exists (fun z => lor (X z) (merely (z = a))).
|
|
|
|
|
destruct (dec (a ∈ X)) as [Ha | Ha];
|
|
|
|
|
destruct PX as [n PX];
|
|
|
|
|
strip_truncations.
|
|
|
|
|
- (* a ∈ X *)
|
|
|
|
|
exists n. apply tr.
|
|
|
|
|
transitivity ({a : A & a ∈ X}); [ | apply PX ].
|
|
|
|
|
apply equiv_functor_sigma_id.
|
|
|
|
|
intro a'. eapply equiv_iff_hprop_uncurried ; split; cbn.
|
|
|
|
|
+ intros Ha'. strip_truncations.
|
|
|
|
|
destruct Ha' as [HXa' | Haa'].
|
|
|
|
|
* assumption.
|
|
|
|
|
* strip_truncations. rewrite Haa'. assumption.
|
|
|
|
|
+ intros HXa'. apply tr.
|
|
|
|
|
left. assumption.
|
|
|
|
|
- (* a ∉ X *)
|
|
|
|
|
exists (S n). apply tr.
|
|
|
|
|
destruct PX as [f [g Hfg Hgf adj]].
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
+ intros [a' Ha']. cbn in Ha'.
|
|
|
|
|
destruct (dec (a' = a)) as [Haa' | Haa'].
|
|
|
|
|
* right. apply tt.
|
|
|
|
|
* assert (X a') as HXa'.
|
|
|
|
|
{ strip_truncations.
|
|
|
|
|
destruct Ha' as [Ha' | Ha']; [ assumption | ].
|
|
|
|
|
strip_truncations. by (contradiction (Haa' Ha')). }
|
|
|
|
|
apply (inl (f (a';HXa'))).
|
|
|
|
|
+ apply isequiv_biinv; simpl.
|
|
|
|
|
unshelve esplit; simpl.
|
|
|
|
|
* unfold Sect; simpl.
|
|
|
|
|
simple refine (_;_).
|
|
|
|
|
{ destruct 1 as [M | ?].
|
|
|
|
|
- destruct (g M) as [a' Ha'].
|
|
|
|
|
exists a'. apply tr.
|
|
|
|
|
by left.
|
|
|
|
|
- exists a. apply (tr (inr (tr idpath))). }
|
|
|
|
|
simpl. intros [a' Ha'].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Ha' as [HXa' | Haa']; simpl;
|
|
|
|
|
destruct (dec (a' = a)); simpl.
|
|
|
|
|
** apply path_sigma' with p^. apply path_ishprop.
|
|
|
|
|
** rewrite Hgf; cbn. done.
|
|
|
|
|
** apply path_sigma' with p^. apply path_ishprop.
|
|
|
|
|
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
|
|
|
|
|
* unfold Sect; simpl.
|
|
|
|
|
simple refine (_;_).
|
|
|
|
|
{ destruct 1 as [M | ?].
|
|
|
|
|
- destruct (g M) as [a' Ha'].
|
|
|
|
|
exists a'. apply tr.
|
|
|
|
|
by left.
|
|
|
|
|
- exists a. apply (tr (inr (tr idpath))). }
|
|
|
|
|
simpl. intros [M | [] ].
|
|
|
|
|
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
|
|
|
|
|
{ destruct (g M) as [a' Ha']. rewrite Haa' in Ha'. by contradiction. }
|
|
|
|
|
{ f_ap. }
|
|
|
|
|
** destruct (dec (a = a)); try by contradiction.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Theorem cowy
|
|
|
|
|
(P : cow -> hProp)
|
|
|
|
|
(doge : P empty_cow)
|
|
|
|
|
(koeientaart : forall a c, P c -> P (add_cow a c))
|
|
|
|
|
:
|
|
|
|
|
forall X : cow, P X.
|
|
|
|
|
Proof.
|
|
|
|
|
intros [X [n FX]]. strip_truncations.
|
|
|
|
|
revert X FX.
|
|
|
|
|
induction n; intros X FX.
|
|
|
|
|
- pose (HX_emp:= X_empty _ X FX).
|
|
|
|
|
assert ((X; Build_Finite _ 0 (tr FX)) = empty_cow) as HX.
|
|
|
|
|
{ apply path_sigma' with HX_emp. apply path_ishprop. }
|
|
|
|
|
rewrite HX. assumption.
|
|
|
|
|
- pose (a' := new_el _ X n FX).
|
|
|
|
|
destruct a' as [a' Ha'].
|
|
|
|
|
destruct (split _ X n FX) as [X' FX'].
|
|
|
|
|
pose (X'cow := (X'; Build_Finite _ n (tr FX')) : cow).
|
|
|
|
|
assert ((X; Build_Finite _ (n.+1) (tr FX)) = add_cow a' X'cow) as ℵ.
|
|
|
|
|
{ simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
|
|
|
|
|
apply path_forall. intros a.
|
|
|
|
|
unfold X'cow.
|
|
|
|
|
specialize (Ha' a). rewrite Ha'. simpl. reflexivity. }
|
|
|
|
|
rewrite ℵ.
|
|
|
|
|
apply koeientaart.
|
|
|
|
|
apply IHn.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-10 17:33:56 +02:00
|
|
|
|
Definition bfin_to_kfin : forall (X : Sub A), Bfin X -> Kf_sub _ X.
|
|
|
|
|
Proof.
|
|
|
|
|
intros X BFinX.
|
|
|
|
|
unfold Bfin in BFinX.
|
|
|
|
|
destruct BFinX as [n iso].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
revert iso ; revert X.
|
|
|
|
|
induction n ; unfold Kf_sub, Kf_sub_intern.
|
|
|
|
|
- intros.
|
|
|
|
|
exists ∅.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro z.
|
|
|
|
|
simpl in *.
|
|
|
|
|
apply path_iff_hprop ; try contradiction.
|
|
|
|
|
destruct iso as [f f_equiv].
|
|
|
|
|
apply (fun Xz => f(z;Xz)).
|
|
|
|
|
- intros.
|
|
|
|
|
simpl in *.
|
2017-08-16 15:59:36 +02:00
|
|
|
|
destruct (new_el _ X n iso) as [a HXX'].
|
|
|
|
|
destruct (split _ X n iso) as [X' X'equiv].
|
2017-08-10 17:33:56 +02:00
|
|
|
|
destruct (IHn X' X'equiv) as [Y HY].
|
|
|
|
|
exists (Y ∪ {|a|}).
|
|
|
|
|
unfold map in *.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro z.
|
|
|
|
|
rewrite union_isIn.
|
|
|
|
|
rewrite <- (ap (fun h => h z) HY).
|
|
|
|
|
rewrite HXX'.
|
|
|
|
|
cbn.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-16 15:59:36 +02:00
|
|
|
|
Lemma kfin_is_bfin : @closedUnion A Bfin.
|
2017-08-10 17:33:56 +02:00
|
|
|
|
Proof.
|
|
|
|
|
intros X Y HX HY.
|
2017-08-16 15:59:36 +02:00
|
|
|
|
pose (Xcow := (X; HX) : cow).
|
|
|
|
|
pose (Ycow := (Y; HY) : cow).
|
|
|
|
|
simple refine (cowy (fun C => Bfin (C.1 ∪ Y)) _ _ Xcow); simpl.
|
|
|
|
|
- assert ((fun a => Trunc (-1) (Empty + Y a)) = (fun a => Y a)) as Help.
|
|
|
|
|
{ apply path_forall. intros z; simpl.
|
|
|
|
|
apply path_iff_ishprop.
|
|
|
|
|
+ intros; strip_truncations; auto.
|
|
|
|
|
destruct X0; auto. destruct e.
|
|
|
|
|
+ intros ?. apply tr. right; assumption.
|
|
|
|
|
(* TODO FIX THIS with sum_empty_l *)
|
2017-08-10 17:33:56 +02:00
|
|
|
|
}
|
2017-08-16 15:59:36 +02:00
|
|
|
|
rewrite Help. apply HY.
|
|
|
|
|
- intros a [X' HX'] [n FX'Y]. strip_truncations.
|
|
|
|
|
destruct (dec(a ∈ X')) as [HaX' | HaX'].
|
|
|
|
|
* exists n. apply tr.
|
|
|
|
|
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
|
|
|
|
|
apply equiv_functor_sigma_id. intro a'.
|
|
|
|
|
apply equiv_iff_hprop.
|
|
|
|
|
{ intros Q. strip_truncations.
|
|
|
|
|
destruct Q as [Q | Q].
|
|
|
|
|
- strip_truncations.
|
|
|
|
|
apply tr. left.
|
|
|
|
|
destruct Q ; auto.
|
|
|
|
|
strip_truncations. rewrite t; assumption.
|
|
|
|
|
- apply (tr (inr Q)). }
|
|
|
|
|
{ intros Q. strip_truncations.
|
|
|
|
|
destruct Q as [Q | Q]; apply tr.
|
|
|
|
|
- left. apply tr. left. done.
|
|
|
|
|
- right. done. }
|
|
|
|
|
* destruct (dec (a ∈ Y)) as [HaY | HaY ].
|
|
|
|
|
** exists n. apply tr.
|
|
|
|
|
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
|
|
|
|
|
apply equiv_functor_sigma_id. intro a'.
|
|
|
|
|
apply equiv_iff_hprop.
|
|
|
|
|
{ intros Q. strip_truncations.
|
|
|
|
|
destruct Q as [Q | Q].
|
|
|
|
|
- strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
destruct Q.
|
|
|
|
|
left. auto.
|
|
|
|
|
right. strip_truncations. rewrite t; assumption.
|
|
|
|
|
- apply (tr (inr Q)). }
|
|
|
|
|
{ intros Q. strip_truncations.
|
|
|
|
|
destruct Q as [Q | Q]; apply tr.
|
|
|
|
|
- left. apply tr. left. done.
|
|
|
|
|
- right. done. }
|
|
|
|
|
** exists (n.+1). apply tr.
|
|
|
|
|
destruct FX'Y as [f [g Hfg Hgf adj]].
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
{ intros [a' Ha']. cbn in Ha'.
|
|
|
|
|
destruct (dec (BuildhProp (a' = a))) as [Ha'a | Ha'a].
|
|
|
|
|
- right. apply tt.
|
|
|
|
|
- left. refine (f (a';_)).
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Ha' as [Ha' | Ha'].
|
|
|
|
|
+ strip_truncations.
|
|
|
|
|
destruct Ha' as [Ha' | Ha'].
|
|
|
|
|
* apply (tr (inl Ha')).
|
|
|
|
|
* strip_truncations. contradiction.
|
|
|
|
|
+ apply (tr (inr Ha')). }
|
|
|
|
|
{ apply isequiv_biinv; simpl.
|
|
|
|
|
unshelve esplit; simpl.
|
|
|
|
|
- unfold Sect; simpl.
|
|
|
|
|
simple refine (_;_).
|
|
|
|
|
{ destruct 1 as [M | ?].
|
|
|
|
|
- destruct (g M) as [a' Ha'].
|
|
|
|
|
exists a'.
|
|
|
|
|
strip_truncations; apply tr.
|
|
|
|
|
destruct Ha' as [Ha' | Ha'].
|
|
|
|
|
+ left. apply (tr (inl Ha')).
|
|
|
|
|
+ right. done.
|
|
|
|
|
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
|
|
|
|
|
{ intros [a' Ha']; simpl.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Ha' as [HXa' | Haa']; simpl;
|
|
|
|
|
destruct (dec (a' = a)); simpl.
|
|
|
|
|
** apply path_sigma' with p^. apply path_ishprop.
|
|
|
|
|
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
|
|
|
|
|
** apply path_sigma' with p^. apply path_ishprop.
|
|
|
|
|
** rewrite Hgf; cbn. done. }
|
|
|
|
|
- unfold Sect; simpl.
|
|
|
|
|
simple refine (_;_).
|
|
|
|
|
{ destruct 1 as [M | ?].
|
|
|
|
|
- (* destruct (g M) as [a' Ha']. *)
|
|
|
|
|
exists (g M).1.
|
|
|
|
|
simple refine (Trunc_rec _ (g M).2).
|
|
|
|
|
intros Ha'.
|
|
|
|
|
apply tr.
|
|
|
|
|
(* strip_truncations; apply tr. *)
|
|
|
|
|
destruct Ha' as [Ha' | Ha'].
|
|
|
|
|
+ left. apply (tr (inl Ha')).
|
|
|
|
|
+ right. done.
|
|
|
|
|
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
|
|
|
|
|
simpl. intros [M | [] ].
|
|
|
|
|
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
|
|
|
|
|
{ destruct (g M) as [a' Ha']. simpl in Haa'.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
rewrite Haa' in Ha'. destruct Ha'; by contradiction. }
|
|
|
|
|
{ f_ap. transitivity (f (g M)); [ | apply Hfg].
|
|
|
|
|
f_ap. apply path_sigma' with idpath.
|
|
|
|
|
apply path_ishprop. }
|
|
|
|
|
** destruct (dec (a = a)); try by contradiction.
|
|
|
|
|
reflexivity. }
|
|
|
|
|
Defined.
|
2017-08-16 17:01:25 +02:00
|
|
|
|
|
2017-08-16 15:59:36 +02:00
|
|
|
|
End cowd.
|
2017-08-16 17:01:25 +02:00
|
|
|
|
|
|
|
|
|
Section Kf_to_Bf.
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Definition FSet_to_Bfin (A : Type) `{DecidablePaths A} : forall (X : FSet A), Bfin (map X).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction; try (intros; apply path_ishprop).
|
|
|
|
|
- exists 0. apply tr. simpl.
|
|
|
|
|
simple refine (BuildEquiv _ _ _ _).
|
|
|
|
|
destruct 1 as [? []].
|
|
|
|
|
- intros a.
|
|
|
|
|
exists 1. apply tr. simpl.
|
|
|
|
|
transitivity Unit; [ | symmetry; apply sum_empty_l ].
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
+ exact (fun _ => tt).
|
|
|
|
|
+ apply isequiv_biinv. split.
|
|
|
|
|
* exists (fun _ => (a; tr(idpath))).
|
|
|
|
|
intros [b Hb]. strip_truncations.
|
|
|
|
|
apply path_sigma' with Hb^.
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
* exists (fun _ => (a; tr(idpath))).
|
|
|
|
|
intros []. reflexivity.
|
|
|
|
|
- intros Y1 Y2 HY1 HY2.
|
|
|
|
|
apply kfin_is_bfin; auto.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Instance Kf_to_Bf (X : Type) (Hfin : Kf X) `{DecidablePaths X} : Finite X.
|
|
|
|
|
Proof.
|
|
|
|
|
apply Kf_unfold in Hfin.
|
|
|
|
|
destruct Hfin as [Y HY].
|
|
|
|
|
pose (X' := FSet_to_Bfin _ Y).
|
|
|
|
|
unfold Bfin in X'.
|
|
|
|
|
simple refine (finite_equiv' _ _ X').
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
- intros [a ?]. apply a.
|
|
|
|
|
- apply isequiv_biinv. split.
|
|
|
|
|
* exists (fun a => (a;HY a)).
|
|
|
|
|
intros [b Hb].
|
|
|
|
|
apply path_sigma' with idpath.
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
* exists (fun a => (a;HY a)).
|
|
|
|
|
intros b. reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End Kf_to_Bf.
|