HITs-Examples/FiniteSets/fsets/operations.v

128 lines
2.9 KiB
Coq
Raw Normal View History

2017-08-01 15:12:59 +02:00
(* Operations on the [FSet A] for an arbitrary [A] *)
Require Import HoTT HitTactics.
Require Import representations.definition disjunction lattice.
2017-05-23 16:30:31 +02:00
2017-08-01 15:12:59 +02:00
Section operations.
2017-08-07 16:49:46 +02:00
Context {A : Type}.
Context `{Univalence}.
2017-05-23 16:30:31 +02:00
2017-08-07 16:49:46 +02:00
Definition isIn : A -> FSet A -> hProp.
Proof.
intros a.
hrecursion.
- exists Empty.
exact _.
- intro a'.
exists (Trunc (-1) (a = a')).
exact _.
- apply lor.
- intros ; symmetry ; apply lor_assoc.
- apply lor_commutative.
- apply lor_nl.
- apply lor_nr.
- intros ; apply lor_idem.
Defined.
2017-05-23 16:30:31 +02:00
2017-08-07 16:49:46 +02:00
Definition subset : FSet A -> FSet A -> hProp.
Proof.
intros X Y.
hrecursion X.
- exists Unit.
exact _.
- intros a.
apply (isIn a Y).
- intros X1 X2.
exists (prod X1 X2).
exact _.
- intros.
apply path_trunctype ; apply equiv_prod_assoc.
- intros.
apply path_trunctype ; apply equiv_prod_symm.
- intros.
apply path_trunctype ; apply prod_unit_l.
- intros.
apply path_trunctype ; apply prod_unit_r.
- intros a'.
apply path_iff_hprop ; cbn.
* intros [p1 p2]. apply p1.
* intros p.
split ; apply p.
Defined.
2017-05-23 16:30:31 +02:00
2017-08-07 16:49:46 +02:00
Definition comprehension :
(A -> Bool) -> FSet A -> FSet A.
Proof.
intros P.
hrecursion.
- apply .
- intro a.
refine (if (P a) then {|a|} else ).
- apply U.
- apply assoc.
- apply comm.
- apply nl.
- apply nr.
- intros; simpl.
destruct (P x).
+ apply idem.
+ apply nl.
Defined.
2017-05-23 16:30:31 +02:00
2017-08-07 16:49:46 +02:00
Definition isEmpty :
FSet A -> Bool.
Proof.
simple refine (FSet_rec _ _ _ true (fun _ => false) andb _ _ _ _ _)
; try eauto with bool_lattice_hints typeclass_instances.
intros ; symmetry ; eauto with lattice_hints typeclass_instances.
2017-08-07 22:13:42 +02:00
Defined.
Lemma union_idemL Z : forall x: FSet Z, x x = x.
Proof.
hinduction ; try (intros ; apply set_path2).
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
f_ap.
Defined.
Context {B : Type}.
2017-08-07 23:15:25 +02:00
Definition single_product (a : A) : FSet B -> FSet (A * B).
Proof.
hrecursion.
- apply .
- intro b.
apply {|(a, b)|}.
- apply U.
- intros X Y Z ; apply assoc.
- intros X Y ; apply comm.
- intros ; apply nl.
- intros ; apply nr.
- intros ; apply idem.
Defined.
2017-08-07 22:13:42 +02:00
Definition product : FSet A -> FSet B -> FSet (A * B).
Proof.
intros X Y.
hrecursion X.
- apply .
- intro a.
2017-08-07 23:15:25 +02:00
apply (single_product a Y).
2017-08-07 22:13:42 +02:00
- apply U.
- intros ; apply assoc.
- intros ; apply comm.
- intros ; apply nl.
- intros ; apply nr.
- intros ; apply union_idemL.
Defined.
2017-08-01 15:12:59 +02:00
End operations.
2017-05-26 12:28:07 +02:00
Infix "" := isIn (at level 9, right associativity).
2017-08-01 15:12:59 +02:00
Infix "" := subset (at level 10, right associativity).