2017-09-21 14:12:51 +02:00
|
|
|
|
Require Import HoTT HitTactics prelude.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
Require Import kuratowski.extensionality kuratowski.operations kuratowski_sets.
|
|
|
|
|
Require Import lattice_interface lattice_examples monad_interface.
|
2017-05-23 16:30:31 +02:00
|
|
|
|
|
2017-09-22 16:16:12 +02:00
|
|
|
|
(** [FSet] is a (strong and stable) finite powerset monad *)
|
|
|
|
|
Section monad_fset.
|
|
|
|
|
Context `{Funext}.
|
|
|
|
|
|
|
|
|
|
Global Instance fset_functorish : Functorish FSet.
|
|
|
|
|
Proof.
|
|
|
|
|
simple refine (Build_Functorish _ _ _).
|
|
|
|
|
- intros ? ? f.
|
|
|
|
|
apply (fset_fmap f).
|
|
|
|
|
- intros A.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro x.
|
|
|
|
|
hinduction x
|
|
|
|
|
; try (intros ; f_ap)
|
|
|
|
|
; try (intros ; apply path_ishprop).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance fset_functor : Functor FSet.
|
|
|
|
|
Proof.
|
|
|
|
|
split.
|
|
|
|
|
intros.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro x.
|
|
|
|
|
hrecursion x
|
|
|
|
|
; try (intros ; f_ap)
|
|
|
|
|
; try (intros ; apply path_ishprop).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance fset_monad : Monad FSet.
|
|
|
|
|
Proof.
|
|
|
|
|
split.
|
|
|
|
|
- intros.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro X.
|
|
|
|
|
hrecursion X ; try (intros; f_ap) ;
|
|
|
|
|
try (intros; apply path_ishprop).
|
|
|
|
|
- intros.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro X.
|
|
|
|
|
hrecursion X ; try (intros; f_ap) ;
|
|
|
|
|
try (intros; apply path_ishprop).
|
|
|
|
|
- intros.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro X.
|
|
|
|
|
hrecursion X ; try (intros; f_ap) ;
|
|
|
|
|
try (intros; apply path_ishprop).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma fmap_isIn `{Univalence} {A B : Type} (f : A -> B) (a : A) (X : FSet A) :
|
|
|
|
|
a ∈ X -> (f a) ∈ (fmap FSet f X).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction X; try (intros; apply path_ishprop).
|
|
|
|
|
- apply idmap.
|
|
|
|
|
- intros b Hab; strip_truncations.
|
|
|
|
|
apply (tr (ap f Hab)).
|
|
|
|
|
- intros X0 X1 HX0 HX1 Ha.
|
|
|
|
|
strip_truncations. apply tr.
|
|
|
|
|
destruct Ha as [Ha | Ha].
|
|
|
|
|
+ left. by apply HX0.
|
|
|
|
|
+ right. by apply HX1.
|
|
|
|
|
Defined.
|
2017-09-25 13:44:11 +02:00
|
|
|
|
|
|
|
|
|
Lemma bind_isIn `{Univalence} {A : Type} (X : FSet (FSet A)) (a : A) :
|
|
|
|
|
(exists x, x ∈ X * a ∈ x) -> a ∈ (bind _ X).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction X;
|
|
|
|
|
try (intros; apply path_forall; intro; apply path_ishprop).
|
|
|
|
|
- simpl. intros [x [[] ?]].
|
|
|
|
|
- intros x [y [Hx Hy]].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
rewrite <- Hx.
|
|
|
|
|
apply Hy.
|
|
|
|
|
- intros x x' IHx IHx'.
|
|
|
|
|
intros [z [Hz Ha]].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
destruct Hz as [Hz | Hz]; [ left | right ].
|
|
|
|
|
+ apply IHx.
|
|
|
|
|
exists z. split; assumption.
|
|
|
|
|
+ apply IHx'.
|
|
|
|
|
exists z. split; assumption.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-09-22 16:16:12 +02:00
|
|
|
|
End monad_fset.
|
|
|
|
|
|
2017-09-07 15:19:48 +02:00
|
|
|
|
(** Lemmas relating operations to the membership predicate *)
|
|
|
|
|
Section properties_membership.
|
|
|
|
|
Context {A : Type} `{Univalence}.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Definition empty_isIn (a: A) : a ∈ ∅ -> Empty := idmap.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
|
2017-08-07 16:49:46 +02:00
|
|
|
|
Definition singleton_isIn (a b: A) : a ∈ {|b|} -> Trunc (-1) (a = b) := idmap.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
|
2017-08-07 16:22:55 +02:00
|
|
|
|
Definition union_isIn (X Y : FSet A) (a : A)
|
2017-08-07 16:49:46 +02:00
|
|
|
|
: a ∈ X ∪ Y = a ∈ X ∨ a ∈ Y := idpath.
|
2017-08-07 16:22:55 +02:00
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Lemma comprehension_union (ϕ : A -> Bool) : forall X Y : FSet A,
|
|
|
|
|
{|X ∪ Y & ϕ|} = {|X & ϕ|} ∪ {|Y & ϕ|}.
|
|
|
|
|
Proof.
|
|
|
|
|
reflexivity.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
Defined.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
|
2017-08-07 16:22:55 +02:00
|
|
|
|
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
|
2017-08-08 15:29:50 +02:00
|
|
|
|
a ∈ {|X & ϕ|} = if ϕ a then a ∈ X else False_hp.
|
2017-08-07 16:22:55 +02:00
|
|
|
|
Proof.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
hinduction ; try (intros ; apply set_path2).
|
2017-08-07 16:22:55 +02:00
|
|
|
|
- destruct (ϕ a) ; reflexivity.
|
|
|
|
|
- intros b.
|
|
|
|
|
assert (forall c d, ϕ a = c -> ϕ b = d ->
|
|
|
|
|
a ∈ (if ϕ b then {|b|} else ∅)
|
|
|
|
|
=
|
|
|
|
|
(if ϕ a then BuildhProp (Trunc (-1) (a = b)) else False_hp)) as X.
|
|
|
|
|
{
|
|
|
|
|
intros c d Hc Hd.
|
|
|
|
|
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
|
|
|
|
|
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
|
|
|
|
|
; apply (false_ne_true).
|
2017-08-09 18:05:58 +02:00
|
|
|
|
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
2017-08-07 16:22:55 +02:00
|
|
|
|
* apply (Hc^ @ ap ϕ X @ Hd).
|
|
|
|
|
}
|
|
|
|
|
apply (X (ϕ a) (ϕ b) idpath idpath).
|
|
|
|
|
- intros X Y H1 H2.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
rewrite comprehension_union.
|
|
|
|
|
rewrite union_isIn.
|
2017-08-07 16:22:55 +02:00
|
|
|
|
rewrite H1, H2.
|
|
|
|
|
destruct (ϕ a).
|
|
|
|
|
* reflexivity.
|
|
|
|
|
* apply path_iff_hprop.
|
|
|
|
|
** intros Z ; strip_truncations.
|
|
|
|
|
destruct Z ; assumption.
|
|
|
|
|
** intros ; apply tr ; right ; assumption.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-09-07 15:19:48 +02:00
|
|
|
|
Context {B : Type}.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
|
2017-09-21 23:33:20 +02:00
|
|
|
|
Lemma singleproduct_isIn (a : A) (b : B) (c : A) : forall (Y : FSet B),
|
2017-08-08 15:29:50 +02:00
|
|
|
|
(a, b) ∈ (single_product c Y) = land (BuildhProp (Trunc (-1) (a = c))) (b ∈ Y).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
Proof.
|
|
|
|
|
hinduction ; try (intros ; apply path_ishprop).
|
2017-08-07 23:27:53 +02:00
|
|
|
|
- apply path_hprop ; symmetry ; apply prod_empty_r.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
- intros d.
|
|
|
|
|
apply path_iff_hprop.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
* intros.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
strip_truncations.
|
|
|
|
|
split ; apply tr ; try (apply (ap fst X)) ; try (apply (ap snd X)).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros [Z1 Z2].
|
2017-08-07 23:27:53 +02:00
|
|
|
|
strip_truncations.
|
|
|
|
|
rewrite Z1, Z2.
|
|
|
|
|
apply (tr idpath).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
- intros X1 X2 HX1 HX2.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
apply path_iff_hprop ; rewrite ?union_isIn.
|
|
|
|
|
* intros X.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
cbn in *.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
strip_truncations.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
destruct X as [H1 | H1] ; rewrite ?HX1, ?HX2 in H1
|
|
|
|
|
; destruct H1 as [H1 H2].
|
2017-08-08 15:29:50 +02:00
|
|
|
|
** split.
|
|
|
|
|
*** apply H1.
|
|
|
|
|
*** apply (tr(inl H2)).
|
|
|
|
|
** split.
|
|
|
|
|
*** apply H1.
|
|
|
|
|
*** apply (tr(inr H2)).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros [H1 H2].
|
2017-09-07 15:19:48 +02:00
|
|
|
|
cbn in *.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
rewrite HX1, HX2.
|
|
|
|
|
destruct H2 as [Hb1 | Hb2].
|
|
|
|
|
** left.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
split ; try (apply (tr H1)) ; try (apply Hb1).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
** right.
|
|
|
|
|
split ; try (apply (tr H1)) ; try (apply Hb2).
|
|
|
|
|
Defined.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
|
2017-09-21 23:33:20 +02:00
|
|
|
|
Definition product_isIn (a : A) (b : B) (X : FSet A) (Y : FSet B) :
|
2017-08-08 15:29:50 +02:00
|
|
|
|
(a,b) ∈ (product X Y) = land (a ∈ X) (b ∈ Y).
|
2017-08-07 22:13:42 +02:00
|
|
|
|
Proof.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
hinduction X ; try (intros ; apply path_ishprop).
|
|
|
|
|
- apply path_hprop ; symmetry ; apply prod_empty_l.
|
|
|
|
|
- intros.
|
2017-09-21 23:33:20 +02:00
|
|
|
|
apply singleproduct_isIn.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
- intros X1 X2 HX1 HX2.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
cbn.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
rewrite HX1, HX2.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
apply path_iff_hprop ; rewrite ?union_isIn.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros X.
|
2017-08-07 22:13:42 +02:00
|
|
|
|
strip_truncations.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
destruct X as [[H3 H4] | [H3 H4]] ; split ; try (apply H4).
|
|
|
|
|
** apply (tr(inl H3)).
|
|
|
|
|
** apply (tr(inr H3)).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros [H1 H2].
|
2017-08-07 22:13:42 +02:00
|
|
|
|
strip_truncations.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
destruct H1 as [H1 | H1] ; apply tr.
|
|
|
|
|
** left ; split ; assumption.
|
|
|
|
|
** right ; split ; assumption.
|
2017-08-07 22:13:42 +02:00
|
|
|
|
Defined.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
|
|
|
|
|
Lemma separation_isIn : forall (X : FSet A) (f : {a | a ∈ X} -> B) (b : B),
|
|
|
|
|
b ∈ (separation A B X f) = hexists (fun a : A => hexists (fun (p : a ∈ X) => f (a;p) = b)).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction ; try (intros ; apply path_forall ; intro ; apply path_ishprop).
|
|
|
|
|
- intros ; simpl.
|
|
|
|
|
apply path_iff_hprop ; try contradiction.
|
|
|
|
|
intros X.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [a X].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [p X].
|
|
|
|
|
assumption.
|
|
|
|
|
- intros.
|
|
|
|
|
apply path_iff_hprop ; simpl.
|
|
|
|
|
* intros ; strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists (tr idpath).
|
|
|
|
|
apply X^.
|
|
|
|
|
* intros X ; strip_truncations.
|
|
|
|
|
destruct X as [a0 X].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [X q].
|
|
|
|
|
simple refine (Trunc_ind _ _ X).
|
|
|
|
|
intros p.
|
|
|
|
|
apply tr.
|
|
|
|
|
rewrite <- q.
|
|
|
|
|
f_ap.
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _).
|
|
|
|
|
** apply p.
|
|
|
|
|
** apply path_ishprop.
|
|
|
|
|
- intros X1 X2 HX1 HX2 f b.
|
|
|
|
|
pose (fX1 := fun Z : {a : A & a ∈ X1} => f (pr1 Z;tr (inl (pr2 Z)))).
|
|
|
|
|
pose (fX2 := fun Z : {a : A & a ∈ X2} => f (pr1 Z;tr (inr (pr2 Z)))).
|
|
|
|
|
specialize (HX1 fX1 b).
|
|
|
|
|
specialize (HX2 fX2 b).
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
* intros X.
|
|
|
|
|
cbn in *.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [X | X].
|
|
|
|
|
** rewrite HX1 in X.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [a Ha].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Ha as [p pa].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists (tr(inl p)).
|
|
|
|
|
rewrite <- pa.
|
|
|
|
|
reflexivity.
|
|
|
|
|
** rewrite HX2 in X.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [a Ha].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Ha as [p pa].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists (tr(inr p)).
|
|
|
|
|
rewrite <- pa.
|
|
|
|
|
reflexivity.
|
|
|
|
|
* intros.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [a X].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [Ha p].
|
|
|
|
|
cbn.
|
|
|
|
|
simple refine (Trunc_ind _ _ Ha) ; intros [Ha1 | Ha2].
|
|
|
|
|
** refine (tr(inl _)).
|
|
|
|
|
rewrite HX1.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists Ha1.
|
|
|
|
|
rewrite <- p.
|
|
|
|
|
unfold fX1.
|
|
|
|
|
repeat f_ap.
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
** refine (tr(inr _)).
|
|
|
|
|
rewrite HX2.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists Ha2.
|
|
|
|
|
rewrite <- p.
|
|
|
|
|
unfold fX2.
|
|
|
|
|
repeat f_ap.
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
Defined.
|
2017-09-22 16:16:12 +02:00
|
|
|
|
|
|
|
|
|
Lemma fmap_isIn_inj (f : A -> B) (a : A) (X : FSet A) {f_inj : IsEmbedding f} :
|
|
|
|
|
a ∈ X = (f a) ∈ (fmap FSet f X).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction X; try (intros; apply path_ishprop).
|
|
|
|
|
- reflexivity.
|
|
|
|
|
- intros b.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
* intros Ha.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
apply (tr (ap f Ha)).
|
|
|
|
|
* intros Hfa.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
unfold IsEmbedding, hfiber in *.
|
|
|
|
|
specialize (f_inj (f a)).
|
|
|
|
|
pose ((a;idpath (f a)) : {x : A & f x = f a}) as p1.
|
|
|
|
|
pose ((b;Hfa^) : {x : A & f x = f a}) as p2.
|
|
|
|
|
assert (p1 = p2) as Hp1p2.
|
|
|
|
|
{ apply f_inj. }
|
|
|
|
|
apply (ap (fun x => x.1) Hp1p2).
|
|
|
|
|
- intros X0 X1 HX0 HX1.
|
|
|
|
|
rewrite ?union_isIn, HX0, HX1.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
End properties_membership.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
|
|
|
|
|
Ltac simplify_isIn :=
|
|
|
|
|
repeat (rewrite union_isIn
|
|
|
|
|
|| rewrite comprehension_isIn).
|
|
|
|
|
|
|
|
|
|
Ltac toHProp :=
|
|
|
|
|
repeat intro;
|
|
|
|
|
apply fset_ext ; intros ;
|
|
|
|
|
simplify_isIn ; eauto with lattice_hints typeclass_instances.
|
|
|
|
|
|
2017-09-07 15:19:48 +02:00
|
|
|
|
(** [FSet A] is a join semilattice. *)
|
|
|
|
|
Section fset_join_semilattice.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
Context {A : Type}.
|
2017-08-07 22:13:42 +02:00
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Instance: bottom(FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold bottom.
|
|
|
|
|
apply ∅.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Instance: maximum(FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
intros x y.
|
|
|
|
|
apply (x ∪ y).
|
|
|
|
|
Defined.
|
2017-08-08 13:45:27 +02:00
|
|
|
|
|
|
|
|
|
Global Instance joinsemilattice_fset : JoinSemiLattice (FSet A).
|
|
|
|
|
Proof.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
split.
|
|
|
|
|
- intros ? ?.
|
|
|
|
|
apply comm.
|
|
|
|
|
- intros ? ? ?.
|
|
|
|
|
apply (assoc _ _ _)^.
|
|
|
|
|
- intros ?.
|
|
|
|
|
apply union_idem.
|
|
|
|
|
- intros x.
|
|
|
|
|
apply nl.
|
|
|
|
|
- intros ?.
|
|
|
|
|
apply nr.
|
|
|
|
|
Defined.
|
|
|
|
|
End fset_join_semilattice.
|
|
|
|
|
|
|
|
|
|
(* Lemmas relating operations to the membership predicate *)
|
|
|
|
|
Section properties_membership_decidable.
|
2017-09-21 14:12:51 +02:00
|
|
|
|
Context {A : Type} `{MerelyDecidablePaths A} `{Univalence}.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
|
|
|
|
|
Lemma ext : forall (S T : FSet A), (forall a, a ∈_d S = a ∈_d T) -> S = T.
|
|
|
|
|
Proof.
|
|
|
|
|
intros X Y H2.
|
|
|
|
|
apply fset_ext.
|
|
|
|
|
intro a.
|
|
|
|
|
specialize (H2 a).
|
|
|
|
|
unfold member_dec, fset_member_bool, dec in H2.
|
|
|
|
|
destruct (isIn_decidable a X) ; destruct (isIn_decidable a Y).
|
|
|
|
|
- apply path_iff_hprop ; intro ; assumption.
|
|
|
|
|
- contradiction (true_ne_false).
|
|
|
|
|
- contradiction (true_ne_false) ; apply H2^.
|
|
|
|
|
- apply path_iff_hprop ; intro ; contradiction.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
Defined.
|
2017-08-08 13:45:27 +02:00
|
|
|
|
|
2017-09-21 14:12:51 +02:00
|
|
|
|
Definition empty_isIn_d (a : A) : a ∈_d ∅ = false := idpath.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
|
|
|
|
|
Lemma singleton_isIn_d_true (a b : A) (p : a = b) :
|
|
|
|
|
a ∈_d {|b|} = true.
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec.
|
|
|
|
|
destruct (isIn_decidable a {|b|}) as [n | n] .
|
|
|
|
|
- reflexivity.
|
|
|
|
|
- simpl in n.
|
|
|
|
|
contradiction (n (tr p)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma singleton_isIn_d_aa (a : A) :
|
|
|
|
|
a ∈_d {|a|} = true.
|
|
|
|
|
Proof.
|
|
|
|
|
apply singleton_isIn_d_true ; reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma singleton_isIn_d_false (a b : A) (p : a <> b) :
|
|
|
|
|
a ∈_d {|b|} = false.
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec in *.
|
|
|
|
|
destruct (isIn_decidable a {|b|}).
|
|
|
|
|
- simpl in t.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
contradiction.
|
|
|
|
|
- reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma union_isIn_d (X Y : FSet A) (a : A) :
|
|
|
|
|
a ∈_d (X ∪ Y) = orb (a ∈_d X) (a ∈_d Y).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec.
|
|
|
|
|
simpl.
|
|
|
|
|
destruct (isIn_decidable a X) ; destruct (isIn_decidable a Y) ; reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma comprehension_isIn_d (Y : FSet A) (ϕ : A -> Bool) (a : A) :
|
|
|
|
|
a ∈_d {|Y & ϕ|} = andb (a ∈_d Y) (ϕ a).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec ; simpl.
|
|
|
|
|
destruct (isIn_decidable a {|Y & ϕ|}) as [t | t]
|
|
|
|
|
; destruct (isIn_decidable a Y) as [n | n] ; rewrite comprehension_isIn in t
|
|
|
|
|
; destruct (ϕ a) ; try reflexivity ; try contradiction
|
|
|
|
|
; try (contradiction (n t)) ; contradiction (t n).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma intersection_isIn_d (X Y: FSet A) (a : A) :
|
2017-09-21 18:09:40 +02:00
|
|
|
|
a ∈_d (X ∩ Y) = andb (a ∈_d X) (a ∈_d Y).
|
|
|
|
|
Proof.
|
|
|
|
|
apply comprehension_isIn_d.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma difference_isIn_d (X Y: FSet A) (a : A) :
|
|
|
|
|
a ∈_d (difference X Y) = andb (a ∈_d X) (negb (a ∈_d Y)).
|
2017-09-07 15:19:48 +02:00
|
|
|
|
Proof.
|
|
|
|
|
apply comprehension_isIn_d.
|
2017-09-21 23:33:20 +02:00
|
|
|
|
Defined.
|
2017-09-22 16:16:12 +02:00
|
|
|
|
|
|
|
|
|
Context (B : Type) `{MerelyDecidablePaths A} `{MerelyDecidablePaths B}.
|
|
|
|
|
|
|
|
|
|
Lemma fmap_isIn_d_inj (f : A -> B) (a : A) (X : FSet A) {f_inj : IsEmbedding f} :
|
|
|
|
|
a ∈_d X = (f a) ∈_d (fmap FSet f X).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec.
|
|
|
|
|
destruct (isIn_decidable a X) as [t | t], (isIn_decidable (f a) (fmap FSet f X)) as [n | n]
|
|
|
|
|
; try reflexivity.
|
|
|
|
|
- rewrite <- fmap_isIn_inj in n ; try (apply _).
|
|
|
|
|
contradiction (n t).
|
|
|
|
|
- rewrite <- fmap_isIn_inj in n ; try (apply _).
|
|
|
|
|
contradiction (t n).
|
|
|
|
|
Defined.
|
2017-09-21 14:12:51 +02:00
|
|
|
|
|
2017-09-21 14:24:27 +02:00
|
|
|
|
Lemma singleton_isIn_d `{IsHSet A} (a b : A) :
|
2017-09-21 14:12:51 +02:00
|
|
|
|
a ∈ {|b|} -> a = b.
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
assumption.
|
|
|
|
|
Defined.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
End properties_membership_decidable.
|
|
|
|
|
|
2017-09-21 23:33:20 +02:00
|
|
|
|
Section product_membership.
|
|
|
|
|
Context {A B : Type} `{MerelyDecidablePaths A} `{MerelyDecidablePaths B} `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Lemma singleproduct_isIn_d_aa (a : A) (b : B) (c : A) (p : c = a) (Y : FSet B) :
|
|
|
|
|
(a, b) ∈_d (single_product c Y) = b ∈_d Y.
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec ; simpl.
|
|
|
|
|
destruct (isIn_decidable (a, b) (single_product c Y)) as [t | t]
|
|
|
|
|
; destruct (isIn_decidable b Y) as [n | n]
|
|
|
|
|
; try reflexivity.
|
|
|
|
|
* rewrite singleproduct_isIn in t.
|
|
|
|
|
destruct t as [t1 t2].
|
|
|
|
|
contradiction (n t2).
|
|
|
|
|
* rewrite singleproduct_isIn in t.
|
|
|
|
|
contradiction (t (tr(p^),n)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma singleproduct_isIn_d_false (a : A) (b : B) (c : A) (p : c = a -> Empty) (Y : FSet B) :
|
|
|
|
|
(a, b) ∈_d (single_product c Y) = false.
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec ; simpl.
|
|
|
|
|
destruct (isIn_decidable (a, b) (single_product c Y)) as [t | t]
|
|
|
|
|
; destruct (isIn_decidable b Y) as [n | n]
|
|
|
|
|
; try reflexivity.
|
|
|
|
|
* rewrite singleproduct_isIn in t.
|
|
|
|
|
destruct t as [t1 t2].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
contradiction (p t1^).
|
|
|
|
|
* rewrite singleproduct_isIn in t.
|
|
|
|
|
contradiction (n (snd t)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma product_isIn_d (a : A) (b : B) (X : FSet A) (Y : FSet B) :
|
|
|
|
|
(a, b) ∈_d (product X Y) = andb (a ∈_d X) (b ∈_d Y).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold member_dec, fset_member_bool, dec ; simpl.
|
|
|
|
|
destruct (isIn_decidable (a, b) (product X Y)) as [t | t]
|
|
|
|
|
; destruct (isIn_decidable a X) as [n1 | n1]
|
|
|
|
|
; destruct (isIn_decidable b Y) as [n2 | n2]
|
|
|
|
|
; try reflexivity
|
|
|
|
|
; rewrite ?product_isIn in t
|
|
|
|
|
; try (destruct t as [t1 t2]
|
|
|
|
|
; contradiction (n1 t1) || contradiction (n2 t2)).
|
|
|
|
|
contradiction (t (n1, n2)).
|
|
|
|
|
Defined.
|
|
|
|
|
End product_membership.
|
|
|
|
|
|
2017-09-07 15:19:48 +02:00
|
|
|
|
(* Some suporting tactics *)
|
|
|
|
|
Ltac simplify_isIn_d :=
|
|
|
|
|
repeat (rewrite union_isIn_d
|
|
|
|
|
|| rewrite singleton_isIn_d_aa
|
|
|
|
|
|| rewrite intersection_isIn_d
|
|
|
|
|
|| rewrite comprehension_isIn_d).
|
|
|
|
|
|
|
|
|
|
Ltac toBool :=
|
|
|
|
|
repeat intro;
|
|
|
|
|
apply ext ; intros ;
|
|
|
|
|
simplify_isIn_d ; eauto with bool_lattice_hints typeclass_instances.
|
|
|
|
|
|
|
|
|
|
(** If `A` has decidable equality, then `FSet A` is a lattice *)
|
|
|
|
|
Section set_lattice.
|
|
|
|
|
Context {A : Type}.
|
2017-09-21 14:12:51 +02:00
|
|
|
|
Context `{MerelyDecidablePaths A}.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Instance fset_max : maximum (FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
intros x y.
|
|
|
|
|
apply (x ∪ y).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Instance fset_min : minimum (FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
intros x y.
|
|
|
|
|
apply (x ∩ y).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Instance fset_bot : bottom (FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold bottom.
|
|
|
|
|
apply ∅.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Instance lattice_fset : Lattice (FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
split ; toBool.
|
|
|
|
|
Defined.
|
|
|
|
|
End set_lattice.
|
|
|
|
|
|
|
|
|
|
(** If `A` has decidable equality, then so has `FSet A`. *)
|
|
|
|
|
Section dec_eq.
|
|
|
|
|
Context {A : Type} `{DecidablePaths A} `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Instance fsets_dec_eq : DecidablePaths (FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
intros X Y.
|
|
|
|
|
apply (decidable_equiv' ((Y ⊆ X) * (X ⊆ Y)) (eq_subset X Y)^-1).
|
|
|
|
|
apply decidable_prod.
|
|
|
|
|
Defined.
|
|
|
|
|
End dec_eq.
|
|
|
|
|
|
|
|
|
|
(** comprehension properties *)
|
|
|
|
|
Section comprehension_properties.
|
|
|
|
|
Context {A : Type} `{Univalence}.
|
|
|
|
|
|
2017-08-08 17:00:30 +02:00
|
|
|
|
Lemma comprehension_false : forall (X : FSet A), {|X & fun _ => false|} = ∅.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Proof.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
toHProp.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma comprehension_subset : forall ϕ (X : FSet A),
|
2017-08-08 15:29:50 +02:00
|
|
|
|
{|X & ϕ|} ∪ X = X.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Proof.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
toHProp.
|
|
|
|
|
destruct (ϕ a) ; eauto with lattice_hints typeclass_instances.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Lemma comprehension_or : forall ϕ ψ (X : FSet A),
|
|
|
|
|
{|X & (fun a => orb (ϕ a) (ψ a))|}
|
|
|
|
|
= {|X & ϕ|} ∪ {|X & ψ|}.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
Proof.
|
|
|
|
|
toHProp.
|
|
|
|
|
symmetry ; destruct (ϕ a) ; destruct (ψ a)
|
|
|
|
|
; eauto with lattice_hints typeclass_instances.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Defined.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
|
|
|
|
|
Lemma comprehension_all : forall (X : FSet A),
|
2017-08-08 17:00:30 +02:00
|
|
|
|
{|X & fun _ => true|} = X.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Proof.
|
|
|
|
|
toHProp.
|
|
|
|
|
Defined.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
End comprehension_properties.
|
|
|
|
|
|
|
|
|
|
(** For [FSet A] we have mere choice. *)
|
|
|
|
|
Section mere_choice.
|
|
|
|
|
Context {A : Type} `{Univalence}.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
|
2017-08-14 12:43:15 +02:00
|
|
|
|
Local Ltac solve_mc :=
|
|
|
|
|
repeat (let x := fresh in intro x ; try(destruct x))
|
|
|
|
|
; simpl
|
|
|
|
|
; rewrite transport_sum
|
|
|
|
|
; try (f_ap ; apply path_ishprop)
|
|
|
|
|
; try (f_ap ; apply set_path2).
|
|
|
|
|
|
|
|
|
|
Lemma merely_choice : forall X : FSet A, (X = ∅) + (hexists (fun a => a ∈ X)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
Proof.
|
2017-08-14 12:43:15 +02:00
|
|
|
|
hinduction.
|
|
|
|
|
- apply (inl idpath).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
- intro a.
|
2017-08-14 12:43:15 +02:00
|
|
|
|
refine (inr (tr (a ; tr idpath))).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
- intros X Y TX TY.
|
2017-08-14 12:43:15 +02:00
|
|
|
|
destruct TX as [XE | HX] ; destruct TY as [YE | HY].
|
|
|
|
|
* refine (inl _).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
rewrite XE, YE.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
apply (union_idem ∅).
|
2017-08-14 12:43:15 +02:00
|
|
|
|
* right.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct HY as [a Ya].
|
|
|
|
|
refine (tr _).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
exists a.
|
|
|
|
|
apply (tr (inr Ya)).
|
2017-08-14 12:43:15 +02:00
|
|
|
|
* right.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct HX as [a Xa].
|
|
|
|
|
refine (tr _).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
exists a.
|
|
|
|
|
apply (tr (inl Xa)).
|
2017-08-14 12:43:15 +02:00
|
|
|
|
* right.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct (HX, HY) as [[a Xa] [b Yb]].
|
|
|
|
|
refine (tr _).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
exists a.
|
|
|
|
|
apply (tr (inl Xa)).
|
2017-08-14 12:43:15 +02:00
|
|
|
|
- solve_mc.
|
|
|
|
|
- solve_mc.
|
|
|
|
|
- solve_mc.
|
|
|
|
|
- solve_mc.
|
|
|
|
|
- solve_mc.
|
2017-08-03 15:07:53 +02:00
|
|
|
|
Defined.
|
2017-09-07 15:19:48 +02:00
|
|
|
|
End mere_choice.
|