HITs-Examples/FiniteSets/fsets/properties.v

201 lines
5.9 KiB
Coq
Raw Normal View History

Require Import HoTT HitTactics.
Require Export representations.definition disjunction fsets.operations.
2017-05-23 16:30:31 +02:00
(* Lemmas relating operations to the membership predicate *)
Section operations_isIn.
2017-08-03 12:21:34 +02:00
Context {A : Type}.
Context `{Univalence}.
Lemma union_idem : forall x: FSet A, U x x = x.
Proof.
2017-08-07 16:22:55 +02:00
hinduction ; try (intros ; apply set_path2).
2017-08-03 12:21:34 +02:00
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
f_ap.
2017-08-07 16:22:55 +02:00
Defined.
2017-08-03 12:21:34 +02:00
(** ** Properties about subset relation. *)
Lemma subset_union (X Y : FSet A) :
subset X Y -> U X Y = Y.
Proof.
2017-08-07 16:22:55 +02:00
hinduction X ; try (intros; apply path_forall; intro; apply set_path2).
2017-08-03 12:21:34 +02:00
- intros. apply nl.
2017-08-07 16:22:55 +02:00
- intros a.
hinduction Y ; try (intros; apply path_forall; intro; apply set_path2).
2017-08-03 12:21:34 +02:00
+ intro.
contradiction.
+ intro a0.
simple refine (Trunc_ind _ _).
intro p ; simpl.
rewrite p; apply idem.
+ intros X1 X2 IH1 IH2.
simple refine (Trunc_ind _ _).
intros [e1 | e2].
++ rewrite assoc.
rewrite (IH1 e1).
reflexivity.
++ rewrite comm.
rewrite <- assoc.
rewrite (comm X2).
rewrite (IH2 e2).
reflexivity.
- intros X1 X2 IH1 IH2 [G1 G2].
rewrite <- assoc.
rewrite (IH2 G2).
apply (IH1 G1).
Defined.
2017-08-07 16:22:55 +02:00
2017-08-03 12:21:34 +02:00
Lemma subset_union_l (X : FSet A) :
forall Y, subset X (U X Y).
Proof.
2017-08-07 16:22:55 +02:00
hinduction X ; try (repeat (intro; intros; apply path_forall);
intro ; apply equiv_hprop_allpath ; apply _).
2017-08-03 12:21:34 +02:00
- apply (fun _ => tt).
- intros a Y.
2017-08-07 16:22:55 +02:00
apply (tr(inl(tr idpath))).
2017-08-03 12:21:34 +02:00
- intros X1 X2 HX1 HX2 Y.
split.
* rewrite <- assoc. apply HX1.
* rewrite (comm X1 X2). rewrite <- assoc. apply HX2.
Defined.
2017-08-07 16:22:55 +02:00
(* simplify it using extensionality *)
2017-08-03 12:21:34 +02:00
Lemma comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
2017-08-07 16:22:55 +02:00
hinduction ; try (intros; apply set_path2).
2017-08-03 12:21:34 +02:00
- apply (union_idem _)^.
- intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply union_idem.
* apply nr.
* apply nl.
* apply union_idem.
- simpl. intros x y P Q.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
2017-05-23 16:30:31 +02:00
End operations_isIn.
(* Other properties *)
Section properties.
2017-08-03 12:21:34 +02:00
Context {A : Type}.
Context `{Univalence}.
(** isIn properties *)
2017-08-07 16:22:55 +02:00
Definition empty_isIn (a: A) : isIn a E -> Empty := idmap.
Definition singleton_isIn (a b: A) : isIn a (L b) -> Trunc (-1) (a = b) := idmap.
2017-08-03 12:21:34 +02:00
2017-08-07 16:22:55 +02:00
Definition union_isIn (X Y : FSet A) (a : A)
: isIn a (U X Y) = isIn a X isIn a Y := idpath.
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
isIn a (comprehension ϕ X) = if ϕ a then isIn a X else False_hp.
Proof.
hinduction ; try (intros ; apply set_path2) ; cbn.
- destruct (ϕ a) ; reflexivity.
- intros b.
assert (forall c d, ϕ a = c -> ϕ b = d ->
a (if ϕ b then {|b|} else )
=
(if ϕ a then BuildhProp (Trunc (-1) (a = b)) else False_hp)) as X.
{
intros c d Hc Hd.
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
; apply (false_ne_true).
* apply (Hd^ @ ap ϕ X^ @ Hc).
* apply (Hc^ @ ap ϕ X @ Hd).
}
apply (X (ϕ a) (ϕ b) idpath idpath).
- intros X Y H1 H2.
rewrite H1, H2.
destruct (ϕ a).
* reflexivity.
* apply path_iff_hprop.
** intros Z ; strip_truncations.
destruct Z ; assumption.
** intros ; apply tr ; right ; assumption.
2017-08-03 12:21:34 +02:00
Defined.
2017-08-07 16:22:55 +02:00
(* The proof can be simplified using extensionality *)
2017-08-03 12:21:34 +02:00
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
Proof.
hrecursion Y; try (intros; apply set_path2).
- reflexivity.
- reflexivity.
- intros x y IHa IHb.
2017-08-07 16:22:55 +02:00
rewrite IHa, IHb.
2017-08-03 12:21:34 +02:00
apply union_idem.
Defined.
2017-08-07 16:22:55 +02:00
(* Can be simplified using extensionality *)
2017-08-03 12:21:34 +02:00
Lemma comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
Proof.
intros ϕ.
hrecursion; try (intros ; apply set_path2) ; cbn.
- apply union_idem.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite Q.
reflexivity.
Defined.
2017-08-03 15:07:53 +02:00
Lemma merely_choice : forall X : FSet A, hor (X = E) (hexists (fun a => isIn a X)).
Proof.
hinduction; try (intros; apply equiv_hprop_allpath ; apply _).
- apply (tr (inl idpath)).
- intro a.
refine (tr (inr (tr (a ; tr idpath)))).
- intros X Y TX TY.
strip_truncations.
destruct TX as [XE | HX] ; destruct TY as [YE | HY] ; try(strip_truncations ; apply tr).
2017-08-07 16:22:55 +02:00
* refine (tr (inl _)).
2017-08-03 15:07:53 +02:00
rewrite XE, YE.
apply (union_idem E).
2017-08-07 16:22:55 +02:00
* destruct HY as [a Ya].
refine (inr (tr _)).
2017-08-03 15:07:53 +02:00
exists a.
apply (tr (inr Ya)).
2017-08-07 16:22:55 +02:00
* destruct HX as [a Xa].
refine (inr (tr _)).
2017-08-03 15:07:53 +02:00
exists a.
apply (tr (inl Xa)).
2017-08-07 16:22:55 +02:00
* destruct (HX, HY) as [[a Xa] [b Yb]].
refine (inr (tr _)).
2017-08-03 15:07:53 +02:00
exists a.
apply (tr (inl Xa)).
Defined.
End properties.