2017-05-24 13:54:00 +02:00
|
|
|
|
Require Import HoTT HitTactics.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
From fsets Require Import operations extensionality.
|
|
|
|
|
Require Export representations.definition disjunction.
|
2017-08-08 13:45:27 +02:00
|
|
|
|
Require Import lattice.
|
2017-05-23 16:30:31 +02:00
|
|
|
|
|
2017-06-19 21:32:55 +02:00
|
|
|
|
(* Lemmas relating operations to the membership predicate *)
|
2017-08-08 13:35:28 +02:00
|
|
|
|
Section characterize_isIn.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Context {A : Type}.
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
|
|
|
|
(** isIn properties *)
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Definition empty_isIn (a: A) : a ∈ ∅ -> Empty := idmap.
|
2017-08-07 16:22:55 +02:00
|
|
|
|
|
2017-08-07 16:49:46 +02:00
|
|
|
|
Definition singleton_isIn (a b: A) : a ∈ {|b|} -> Trunc (-1) (a = b) := idmap.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
|
2017-08-07 16:22:55 +02:00
|
|
|
|
Definition union_isIn (X Y : FSet A) (a : A)
|
2017-08-07 16:49:46 +02:00
|
|
|
|
: a ∈ X ∪ Y = a ∈ X ∨ a ∈ Y := idpath.
|
2017-08-07 16:22:55 +02:00
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Lemma comprehension_union (ϕ : A -> Bool) : forall X Y : FSet A,
|
|
|
|
|
{|X ∪ Y & ϕ|} = {|X & ϕ|} ∪ {|Y & ϕ|}.
|
|
|
|
|
Proof.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-07 16:22:55 +02:00
|
|
|
|
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
|
2017-08-08 15:29:50 +02:00
|
|
|
|
a ∈ {|X & ϕ|} = if ϕ a then a ∈ X else False_hp.
|
2017-08-07 16:22:55 +02:00
|
|
|
|
Proof.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
hinduction ; try (intros ; apply set_path2).
|
2017-08-07 16:22:55 +02:00
|
|
|
|
- destruct (ϕ a) ; reflexivity.
|
|
|
|
|
- intros b.
|
|
|
|
|
assert (forall c d, ϕ a = c -> ϕ b = d ->
|
|
|
|
|
a ∈ (if ϕ b then {|b|} else ∅)
|
|
|
|
|
=
|
|
|
|
|
(if ϕ a then BuildhProp (Trunc (-1) (a = b)) else False_hp)) as X.
|
|
|
|
|
{
|
|
|
|
|
intros c d Hc Hd.
|
|
|
|
|
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
|
|
|
|
|
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
|
|
|
|
|
; apply (false_ne_true).
|
|
|
|
|
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
|
|
|
|
* apply (Hc^ @ ap ϕ X @ Hd).
|
|
|
|
|
}
|
|
|
|
|
apply (X (ϕ a) (ϕ b) idpath idpath).
|
|
|
|
|
- intros X Y H1 H2.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
rewrite comprehension_union.
|
|
|
|
|
rewrite union_isIn.
|
2017-08-07 16:22:55 +02:00
|
|
|
|
rewrite H1, H2.
|
|
|
|
|
destruct (ϕ a).
|
|
|
|
|
* reflexivity.
|
|
|
|
|
* apply path_iff_hprop.
|
|
|
|
|
** intros Z ; strip_truncations.
|
|
|
|
|
destruct Z ; assumption.
|
|
|
|
|
** intros ; apply tr ; right ; assumption.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Defined.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
End characterize_isIn.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Section product_isIn.
|
|
|
|
|
Context {A B : Type}.
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
2017-08-07 23:27:53 +02:00
|
|
|
|
Lemma isIn_singleproduct (a : A) (b : B) (c : A) : forall (Y : FSet B),
|
2017-08-08 15:29:50 +02:00
|
|
|
|
(a, b) ∈ (single_product c Y) = land (BuildhProp (Trunc (-1) (a = c))) (b ∈ Y).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
Proof.
|
|
|
|
|
hinduction ; try (intros ; apply path_ishprop).
|
2017-08-07 23:27:53 +02:00
|
|
|
|
- apply path_hprop ; symmetry ; apply prod_empty_r.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
- intros d.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
* intros.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
strip_truncations.
|
|
|
|
|
split ; apply tr ; try (apply (ap fst X)) ; try (apply (ap snd X)).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros [Z1 Z2].
|
2017-08-07 23:27:53 +02:00
|
|
|
|
strip_truncations.
|
|
|
|
|
rewrite Z1, Z2.
|
|
|
|
|
apply (tr idpath).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
- intros X1 X2 HX1 HX2.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
apply path_iff_hprop ; rewrite ?union_isIn.
|
|
|
|
|
* intros X.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [H1 | H1] ; rewrite ?HX1, ?HX2 in H1 ; destruct H1 as [H1 H2].
|
|
|
|
|
** split.
|
|
|
|
|
*** apply H1.
|
|
|
|
|
*** apply (tr(inl H2)).
|
|
|
|
|
** split.
|
|
|
|
|
*** apply H1.
|
|
|
|
|
*** apply (tr(inr H2)).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros [H1 H2].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
rewrite HX1, HX2.
|
|
|
|
|
destruct H2 as [Hb1 | Hb2].
|
|
|
|
|
** left.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
split ; try (apply (tr H1)) ; try (apply Hb1).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
** right.
|
|
|
|
|
split ; try (apply (tr H1)) ; try (apply Hb2).
|
|
|
|
|
Defined.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
|
2017-08-07 23:27:53 +02:00
|
|
|
|
Definition isIn_product (a : A) (b : B) (X : FSet A) (Y : FSet B) :
|
2017-08-08 15:29:50 +02:00
|
|
|
|
(a,b) ∈ (product X Y) = land (a ∈ X) (b ∈ Y).
|
2017-08-07 22:13:42 +02:00
|
|
|
|
Proof.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
hinduction X ; try (intros ; apply path_ishprop).
|
|
|
|
|
- apply path_hprop ; symmetry ; apply prod_empty_l.
|
|
|
|
|
- intros.
|
|
|
|
|
apply isIn_singleproduct.
|
|
|
|
|
- intros X1 X2 HX1 HX2.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
rewrite (union_isIn (product X1 Y)).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
rewrite HX1, HX2.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
apply path_iff_hprop ; rewrite ?union_isIn.
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros X.
|
2017-08-07 22:13:42 +02:00
|
|
|
|
strip_truncations.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
destruct X as [[H3 H4] | [H3 H4]] ; split ; try (apply H4).
|
|
|
|
|
** apply (tr(inl H3)).
|
|
|
|
|
** apply (tr(inr H3)).
|
2017-08-07 23:15:25 +02:00
|
|
|
|
* intros [H1 H2].
|
2017-08-07 22:13:42 +02:00
|
|
|
|
strip_truncations.
|
2017-08-07 23:27:53 +02:00
|
|
|
|
destruct H1 as [H1 | H1] ; apply tr.
|
|
|
|
|
** left ; split ; assumption.
|
|
|
|
|
** right ; split ; assumption.
|
2017-08-07 22:13:42 +02:00
|
|
|
|
Defined.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
End product_isIn.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
|
|
|
|
|
Ltac simplify_isIn :=
|
|
|
|
|
repeat (rewrite union_isIn
|
|
|
|
|
|| rewrite comprehension_isIn).
|
|
|
|
|
|
|
|
|
|
Ltac toHProp :=
|
|
|
|
|
repeat intro;
|
|
|
|
|
apply fset_ext ; intros ;
|
|
|
|
|
simplify_isIn ; eauto with lattice_hints typeclass_instances.
|
|
|
|
|
|
|
|
|
|
(* Other properties *)
|
|
|
|
|
Section properties.
|
|
|
|
|
Context {A : Type}.
|
|
|
|
|
Context `{Univalence}.
|
2017-08-07 22:13:42 +02:00
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Instance: bottom(FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold bottom.
|
|
|
|
|
apply ∅.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Instance: maximum(FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
intros x y.
|
|
|
|
|
apply (x ∪ y).
|
|
|
|
|
Defined.
|
2017-08-08 13:45:27 +02:00
|
|
|
|
|
|
|
|
|
Global Instance joinsemilattice_fset : JoinSemiLattice (FSet A).
|
|
|
|
|
Proof.
|
|
|
|
|
split ; toHProp.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-03 12:21:34 +02:00
|
|
|
|
(** comprehension properties *)
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Lemma comprehension_false X : {|X & (fun (_ : A) => false)|} = ∅.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Proof.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
toHProp.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma comprehension_subset : forall ϕ (X : FSet A),
|
2017-08-08 15:29:50 +02:00
|
|
|
|
{|X & ϕ|} ∪ X = X.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Proof.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
toHProp.
|
|
|
|
|
destruct (ϕ a) ; eauto with lattice_hints typeclass_instances.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-08 15:29:50 +02:00
|
|
|
|
Lemma comprehension_or : forall ϕ ψ (X : FSet A),
|
|
|
|
|
{|X & (fun a => orb (ϕ a) (ψ a))|}
|
|
|
|
|
= {|X & ϕ|} ∪ {|X & ψ|}.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
Proof.
|
|
|
|
|
toHProp.
|
|
|
|
|
symmetry ; destruct (ϕ a) ; destruct (ψ a)
|
|
|
|
|
; eauto with lattice_hints typeclass_instances.
|
2017-08-03 12:21:34 +02:00
|
|
|
|
Defined.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
|
|
|
|
|
Lemma comprehension_all : forall (X : FSet A),
|
|
|
|
|
comprehension (fun a => true) X = X.
|
|
|
|
|
Proof.
|
|
|
|
|
toHProp.
|
|
|
|
|
Defined.
|
2017-08-03 15:07:53 +02:00
|
|
|
|
|
2017-08-07 16:49:46 +02:00
|
|
|
|
Lemma merely_choice : forall X : FSet A, hor (X = ∅) (hexists (fun a => a ∈ X)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
Proof.
|
|
|
|
|
hinduction; try (intros; apply equiv_hprop_allpath ; apply _).
|
|
|
|
|
- apply (tr (inl idpath)).
|
|
|
|
|
- intro a.
|
|
|
|
|
refine (tr (inr (tr (a ; tr idpath)))).
|
|
|
|
|
- intros X Y TX TY.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct TX as [XE | HX] ; destruct TY as [YE | HY] ; try(strip_truncations ; apply tr).
|
2017-08-07 16:22:55 +02:00
|
|
|
|
* refine (tr (inl _)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
rewrite XE, YE.
|
2017-08-08 15:29:50 +02:00
|
|
|
|
apply (union_idem ∅).
|
2017-08-07 16:22:55 +02:00
|
|
|
|
* destruct HY as [a Ya].
|
|
|
|
|
refine (inr (tr _)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
exists a.
|
|
|
|
|
apply (tr (inr Ya)).
|
2017-08-07 16:22:55 +02:00
|
|
|
|
* destruct HX as [a Xa].
|
|
|
|
|
refine (inr (tr _)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
exists a.
|
|
|
|
|
apply (tr (inl Xa)).
|
2017-08-07 16:22:55 +02:00
|
|
|
|
* destruct (HX, HY) as [[a Xa] [b Yb]].
|
|
|
|
|
refine (inr (tr _)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
exists a.
|
|
|
|
|
apply (tr (inl Xa)).
|
|
|
|
|
Defined.
|
2017-08-08 00:41:27 +02:00
|
|
|
|
|
2017-08-08 13:35:28 +02:00
|
|
|
|
(*
|
2017-08-08 00:41:27 +02:00
|
|
|
|
Lemma separation : forall (X : FSet A) (f : {a | a ∈ X} -> B),
|
|
|
|
|
hexists (fun Y : FSet B => forall (b : B),
|
|
|
|
|
b ∈ Y = hexists (fun a => hexists (fun (p : a ∈ X) => f (a;p) = b))).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction ; try (intros ; apply path_forall ; intro ; apply path_ishprop).
|
|
|
|
|
- intros ; simpl.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists ∅.
|
|
|
|
|
intros ; simpl.
|
|
|
|
|
apply path_iff_hprop ; try contradiction.
|
|
|
|
|
intros.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [a X].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [p X].
|
|
|
|
|
assumption.
|
|
|
|
|
- intros a f.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists {|f (a;tr idpath)|}.
|
|
|
|
|
intros.
|
|
|
|
|
apply path_iff_hprop ; simpl.
|
|
|
|
|
* intros ; strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists (tr idpath).
|
|
|
|
|
apply X^.
|
|
|
|
|
* intros ; strip_truncations.
|
|
|
|
|
destruct X as [a0 X].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [X q].
|
|
|
|
|
simple refine (Trunc_ind _ _ X).
|
|
|
|
|
intros p.
|
|
|
|
|
apply tr.
|
|
|
|
|
rewrite <- q.
|
|
|
|
|
f_ap.
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _).
|
|
|
|
|
** apply p.
|
|
|
|
|
** apply path_ishprop.
|
|
|
|
|
- intros X1 X2 HX1 HX2 f.
|
|
|
|
|
pose (fX1 := fun Z : {a : A & a ∈ X1} => f (pr1 Z;tr (inl (pr2 Z)))).
|
|
|
|
|
pose (fX2 := fun Z : {a : A & a ∈ X2} => f (pr1 Z;tr (inr (pr2 Z)))).
|
|
|
|
|
specialize (HX1 fX1).
|
|
|
|
|
specialize (HX2 fX2).
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct HX1 as [Y1 fY1].
|
|
|
|
|
destruct HX2 as [Y2 fY2].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists (Y1 ∪ Y2).
|
|
|
|
|
intros b.
|
|
|
|
|
specialize (fY1 b).
|
|
|
|
|
specialize (fY2 b).
|
|
|
|
|
cbn.
|
|
|
|
|
rewrite fY1, fY2.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
* intros.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [X | X] ; strip_truncations.
|
|
|
|
|
** destruct X as [a Ha].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Ha as [p pa].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists (tr(inl p)).
|
|
|
|
|
rewrite <- pa.
|
|
|
|
|
unfold fX1.
|
|
|
|
|
reflexivity.
|
|
|
|
|
** destruct X as [a Ha].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists a.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Ha as [p pa].
|
|
|
|
|
apply tr.
|
|
|
|
|
exists (tr(inr p)).
|
|
|
|
|
rewrite <- pa.
|
|
|
|
|
unfold fX2.
|
|
|
|
|
reflexivity.
|
|
|
|
|
* intros.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [a X].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X as [Ha p].
|
|
|
|
|
simple refine (Trunc_ind _ _ Ha) ; intros [Ha1 | Ha2].
|
|
|
|
|
** refine (tr(inl(tr _))).
|
|
|
|
|
exists a.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists Ha1.
|
|
|
|
|
rewrite <- p.
|
|
|
|
|
unfold fX1.
|
|
|
|
|
repeat f_ap.
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
** refine (tr(inr(tr _))).
|
|
|
|
|
exists a.
|
|
|
|
|
apply tr.
|
|
|
|
|
exists Ha2.
|
|
|
|
|
rewrite <- p.
|
|
|
|
|
unfold fX2.
|
|
|
|
|
repeat f_ap.
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
Defined.
|
2017-08-08 13:35:28 +02:00
|
|
|
|
*)
|
2017-08-07 14:55:07 +02:00
|
|
|
|
|
2017-06-19 21:06:17 +02:00
|
|
|
|
End properties.
|