HITs-Examples/FiniteSets/variations/b_finite.v

523 lines
17 KiB
Coq
Raw Normal View History

(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
Require Import HoTT HitTactics.
Require Import Sub notation variations.k_finite.
Require Import fsets.properties.
Section finite_hott.
Variable (A : Type).
Context `{Univalence} `{IsHSet A}.
(* A subobject is B-finite if its extension is B-finite as a type *)
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Global Instance singleton_contr a : Contr {b : A & b {|a|}}.
Proof.
exists (a; tr idpath).
intros [b p].
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
clear p; intro p. simpl.
apply path_sigma' with (p^).
apply path_ishprop.
Defined.
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b {|a|}}.
Proof.
intros _. apply (center {b : A & b {|a|}}).
Defined.
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
Proof. apply _. Defined.
Definition singleton : closedSingleton Bfin.
Proof.
intros a.
simple refine (Build_Finite _ 1 _).
apply tr.
symmetry.
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
Defined.
Definition empty_finite : closedEmpty Bfin.
Proof.
simple refine (Build_Finite _ 0 _).
apply tr.
simple refine (BuildEquiv _ _ _ _).
intros [a p]; apply p.
Defined.
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
Proof.
intros X Y.
destruct Y as [n Xn].
strip_truncations.
destruct Xn as [f [g fg gf adj]].
destruct n.
- refine (tr(inl _)).
apply path_forall. intro z.
apply path_iff_hprop.
* intros p.
contradiction (f (z;p)).
* contradiction.
- refine (tr(inr _)).
apply (tr(g(inr tt))).
Defined.
Lemma no_union
(f : forall (X Y : Sub A),
Bfin X -> Bfin Y -> Bfin (X Y))
(a b : A) :
hor (a = b) (a = b -> Empty).
Proof.
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
unfold Bfin in f.
destruct f as [n pn].
strip_truncations.
destruct pn as [f [g fg gf _]].
destruct n as [|n].
unfold Sect in *.
- contradiction f.
exists a. apply (tr(inl(tr idpath))).
- destruct n as [|n].
+ (* If the size of the union is 1, then (a = b) *)
refine (tr (inl _)).
pose (s1 := (a;tr(inl(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
pose (s2 := (b;tr(inr(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
assert (fs_eq : f s1 = f s2).
{ by apply path_ishprop. }
refine (ap (fun x => (g x).1) fs_eq).
+ (* Otherwise, ¬(a = b) *)
refine (tr (inr _)).
intros p.
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
pose (s2 := inr tt : Fin n + Unit + Unit).
pose (gs1 := g s1).
pose (c := g s1).
pose (gs2 := g s2).
pose (d := g s2).
assert (Hgs1 : gs1 = c) by reflexivity.
assert (Hgs2 : gs2 = d) by reflexivity.
destruct c as [x px'].
destruct d as [y py'].
simple refine (Trunc_ind _ _ px') ; intros px.
simple refine (Trunc_ind _ _ py') ; intros py.
simpl.
cut (x = y).
{
enough (s1 = s2) as X.
{
intros.
unfold s1, s2 in X.
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
+ apply tt.
+ rewrite X ; apply tt.
}
transitivity (f gs1).
{ apply (fg s1)^. }
symmetry ; transitivity (f gs2).
{ apply (fg s2)^. }
rewrite Hgs1, Hgs2.
f_ap.
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
* apply (p2 @ p1^).
* refine (p2 @ _^ @ p1^). auto.
* refine (p2 @ _ @ p1^). auto.
* apply (p2 @ p1^).
}
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
** apply (px @ py^).
** refine (px @ _ @ py^). auto.
** refine (px @ _ @ py^). symmetry. auto.
** apply (px @ py^).
Defined.
Section empty.
Variable (X : A -> hProp)
(Xequiv : {a : A & a X} <~> Fin 0).
Lemma X_empty : X = .
Proof.
apply path_forall.
intro z.
apply path_iff_hprop ; try contradiction.
intro x.
destruct Xequiv as [f fequiv].
contradiction (f(z;x)).
Defined.
End empty.
Section split.
Variable (P : A -> hProp)
(n : nat)
(Xequiv : {a : A & P a } <~> Fin n + Unit).
Definition split : exists P' : Sub A, exists b : A,
({a : A & P' a} <~> Fin n) * (forall x, P x = P' x merely (x = b)).
Proof.
destruct Xequiv as [f [g fg gf adj]].
unfold Sect in *.
pose (fun x : A => sig (fun y : Fin n => x = (g (inl y)).1)) as P'.
assert (forall x, IsHProp (P' x)).
{
intros a. unfold P'.
apply hprop_allpath.
intros [x px] [y py].
simple refine (path_sigma _ _ _ _ _); [ simpl | apply path_ishprop ].
apply path_sum_inl with Unit.
cut (g (inl x) = g (inl y)).
{ intros p.
pose (ap f p) as Hp.
by rewrite !fg in Hp. }
apply path_sigma with (px^ @ py).
apply path_ishprop.
}
exists (fun a => BuildhProp (P' a)).
exists (g (inr tt)).1.
split.
{ unshelve eapply BuildEquiv.
{ refine (fun x => x.2.1). }
apply isequiv_biinv.
unshelve esplit;
exists (fun x => (((g (inl x)).1; (x; idpath)))).
- intros [a [y p]]; cbn.
eapply path_sigma with p^.
apply path_ishprop.
- intros x; cbn.
reflexivity. }
{ intros a.
unfold P'.
apply path_iff_hprop.
- intros Ha.
pose (y := f (a;Ha)).
assert (Hy : y = f (a; Ha)) by reflexivity.
destruct y as [y | []].
+ refine (tr (inl _)).
exists y.
rewrite Hy.
by rewrite gf.
+ refine (tr (inr (tr _))).
rewrite Hy.
by rewrite gf.
- intros Hstuff.
strip_truncations.
destruct Hstuff as [[y Hy] | Ha].
+ rewrite Hy.
apply (g (inl y)).2.
+ strip_truncations.
rewrite Ha.
apply (g (inr tt)).2. }
Defined.
End split.
End finite_hott.
Arguments Bfin {_} _.
Section dec_membership.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Global Instance DecidableMembership (P : Sub A) (Hfin : Bfin P) (a : A) :
Decidable (a P).
Proof.
destruct Hfin as [n Hequiv].
strip_truncations.
revert Hequiv.
revert P.
induction n.
- intros.
pose (X_empty _ P Hequiv) as p.
rewrite p.
apply _.
- intros.
destruct (split _ P n Hequiv) as
(P' & b & HP' & HP).
unfold member, sub_membership.
rewrite (HP a).
destruct (IHn P' HP') as [IH | IH].
+ left. apply (tr (inl IH)).
+ destruct (dec (a = b)) as [Hab | Hab].
left. apply (tr (inr (tr Hab))).
right. intros α. strip_truncations.
destruct α as [β | γ]; [ | strip_truncations]; contradiction.
Defined.
End dec_membership.
Section cowd.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Definition cow := { X : Sub A | Bfin X}.
Definition empty_cow : cow.
Proof.
exists empty. apply empty_finite.
Defined.
Definition add_cow : forall a : A, cow -> cow.
Proof.
intros a [X PX].
exists (fun z => lor (X z) (merely (z = a))).
destruct (dec (a X)) as [Ha | Ha];
destruct PX as [n PX];
strip_truncations.
- (* a ∈ X *)
exists n. apply tr.
transitivity ({a : A & a X}); [ | apply PX ].
apply equiv_functor_sigma_id.
intro a'. eapply equiv_iff_hprop_uncurried ; split; cbn.
+ intros Ha'. strip_truncations.
destruct Ha' as [HXa' | Haa'].
* assumption.
* strip_truncations. rewrite Haa'. assumption.
+ intros HXa'. apply tr.
left. assumption.
- (* a ∉ X *)
exists (S n). apply tr.
destruct PX as [f [g Hfg Hgf adj]].
unshelve esplit.
+ intros [a' Ha']. cbn in Ha'.
destruct (dec (a' = a)) as [Haa' | Haa'].
* right. apply tt.
* assert (X a') as HXa'.
{ strip_truncations.
destruct Ha' as [Ha' | Ha']; [ assumption | ].
strip_truncations. by (contradiction (Haa' Ha')). }
apply (inl (f (a';HXa'))).
+ apply isequiv_biinv; simpl.
unshelve esplit; simpl.
* unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'. apply tr.
by left.
- exists a. apply (tr (inr (tr idpath))). }
simpl. intros [a' Ha'].
strip_truncations.
destruct Ha' as [HXa' | Haa']; simpl;
destruct (dec (a' = a)); simpl.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. done.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
* unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'. apply tr.
by left.
- exists a. apply (tr (inr (tr idpath))). }
simpl. intros [M | [] ].
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
{ destruct (g M) as [a' Ha']. rewrite Haa' in Ha'. by contradiction. }
{ f_ap. }
** destruct (dec (a = a)); try by contradiction.
reflexivity.
Defined.
Theorem cowy
(P : cow -> hProp)
(doge : P empty_cow)
(koeientaart : forall a c, P c -> P (add_cow a c))
:
forall X : cow, P X.
Proof.
intros [X [n FX]]. strip_truncations.
revert X FX.
induction n; intros X FX.
- pose (HX_emp:= X_empty _ X FX).
assert ((X; Build_Finite _ 0 (tr FX)) = empty_cow) as HX.
{ apply path_sigma' with HX_emp. apply path_ishprop. }
rewrite HX. assumption.
- destruct (split _ X n FX) as
(X' & b & FX' & HX).
pose (X'cow := (X'; Build_Finite _ n (tr FX')) : cow).
assert ((X; Build_Finite _ (n.+1) (tr FX)) = add_cow b X'cow) as .
{ simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
apply path_forall. intros a.
unfold X'cow.
rewrite (HX a). simpl. reflexivity. }
rewrite .
apply koeientaart.
apply IHn.
Defined.
Definition bfin_to_kfin : forall (P : Sub A), Bfin P -> Kf_sub _ P.
Proof.
intros P [n f].
strip_truncations.
unfold Kf_sub, Kf_sub_intern.
revert f. revert P.
induction n; intros P f.
- exists .
apply path_forall; intro a; simpl.
apply path_iff_hprop; [ | contradiction ].
intros p.
apply (f (a;p)).
- destruct (split _ P n f) as
(P' & b & HP' & HP).
destruct (IHn P' HP') as [Y HY].
exists (Y {|b|}).
apply path_forall; intro a. simpl.
rewrite <- HY.
apply HP.
Defined.
Lemma kfin_is_bfin : @closedUnion A Bfin.
Proof.
intros X Y HX HY.
pose (Xcow := (X; HX) : cow).
pose (Ycow := (Y; HY) : cow).
simple refine (cowy (fun C => Bfin (C.1 Y)) _ _ Xcow); simpl.
- assert ((fun a => Trunc (-1) (Empty + Y a)) = (fun a => Y a)) as Help.
{ apply path_forall. intros z; simpl.
apply path_iff_ishprop.
+ intros; strip_truncations; auto.
destruct X0; auto. destruct e.
+ intros ?. apply tr. right; assumption.
(* TODO FIX THIS with sum_empty_l *)
}
rewrite Help. apply HY.
- intros a [X' HX'] [n FX'Y]. strip_truncations.
destruct (dec(a X')) as [HaX' | HaX'].
* exists n. apply tr.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
apply equiv_functor_sigma_id. intro a'.
apply equiv_iff_hprop.
{ intros Q. strip_truncations.
destruct Q as [Q | Q].
- strip_truncations.
apply tr. left.
destruct Q ; auto.
strip_truncations. rewrite t; assumption.
- apply (tr (inr Q)). }
{ intros Q. strip_truncations.
destruct Q as [Q | Q]; apply tr.
- left. apply tr. left. done.
- right. done. }
* destruct (dec (a Y)) as [HaY | HaY ].
** exists n. apply tr.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
apply equiv_functor_sigma_id. intro a'.
apply equiv_iff_hprop.
{ intros Q. strip_truncations.
destruct Q as [Q | Q].
- strip_truncations.
apply tr.
destruct Q.
left. auto.
right. strip_truncations. rewrite t; assumption.
- apply (tr (inr Q)). }
{ intros Q. strip_truncations.
destruct Q as [Q | Q]; apply tr.
- left. apply tr. left. done.
- right. done. }
** exists (n.+1). apply tr.
destruct FX'Y as [f [g Hfg Hgf adj]].
unshelve esplit.
{ intros [a' Ha']. cbn in Ha'.
destruct (dec (BuildhProp (a' = a))) as [Ha'a | Ha'a].
- right. apply tt.
- left. refine (f (a';_)).
strip_truncations.
destruct Ha' as [Ha' | Ha'].
+ strip_truncations.
destruct Ha' as [Ha' | Ha'].
* apply (tr (inl Ha')).
* strip_truncations. contradiction.
+ apply (tr (inr Ha')). }
{ apply isequiv_biinv; simpl.
unshelve esplit; simpl.
- unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'.
strip_truncations; apply tr.
destruct Ha' as [Ha' | Ha'].
+ left. apply (tr (inl Ha')).
+ right. done.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
{ intros [a' Ha']; simpl.
strip_truncations.
destruct Ha' as [HXa' | Haa']; simpl;
destruct (dec (a' = a)); simpl.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. done. }
- unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- (* destruct (g M) as [a' Ha']. *)
exists (g M).1.
simple refine (Trunc_rec _ (g M).2).
intros Ha'.
apply tr.
(* strip_truncations; apply tr. *)
destruct Ha' as [Ha' | Ha'].
+ left. apply (tr (inl Ha')).
+ right. done.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
simpl. intros [M | [] ].
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
{ destruct (g M) as [a' Ha']. simpl in Haa'.
strip_truncations.
rewrite Haa' in Ha'. destruct Ha'; by contradiction. }
{ f_ap. transitivity (f (g M)); [ | apply Hfg].
f_ap. apply path_sigma' with idpath.
apply path_ishprop. }
** destruct (dec (a = a)); try by contradiction.
reflexivity. }
Defined.
End cowd.
Section Kf_to_Bf.
Context `{Univalence}.
Definition FSet_to_Bfin (A : Type) `{DecidablePaths A} : forall (X : FSet A), Bfin (map X).
Proof.
hinduction; try (intros; apply path_ishprop).
- exists 0. apply tr. simpl.
simple refine (BuildEquiv _ _ _ _).
destruct 1 as [? []].
- intros a.
exists 1. apply tr. simpl.
transitivity Unit; [ | symmetry; apply sum_empty_l ].
unshelve esplit.
+ exact (fun _ => tt).
+ apply isequiv_biinv. split.
* exists (fun _ => (a; tr(idpath))).
intros [b Hb]. strip_truncations.
apply path_sigma' with Hb^.
apply path_ishprop.
* exists (fun _ => (a; tr(idpath))).
intros []. reflexivity.
- intros Y1 Y2 HY1 HY2.
apply kfin_is_bfin; auto.
Defined.
Instance Kf_to_Bf (X : Type) (Hfin : Kf X) `{DecidablePaths X} : Finite X.
Proof.
apply Kf_unfold in Hfin.
destruct Hfin as [Y HY].
pose (X' := FSet_to_Bfin _ Y).
unfold Bfin in X'.
simple refine (finite_equiv' _ _ X').
unshelve esplit.
- intros [a ?]. apply a.
- apply isequiv_biinv. split.
* exists (fun a => (a;HY a)).
intros [b Hb].
apply path_sigma' with idpath.
apply path_ishprop.
* exists (fun a => (a;HY a)).
intros b. reflexivity.
Defined.
End Kf_to_Bf.