mirror of https://github.com/nmvdw/HITs-Examples
Added proof that the finite sets in HoTTlibrary have no intersection and union
This commit is contained in:
parent
c358ef1659
commit
5233fc6de9
144
FiniteSets/Sub.v
144
FiniteSets/Sub.v
|
@ -24,9 +24,8 @@ Section sub_classes.
|
|||
Variable C : (A -> hProp) -> hProp.
|
||||
Context `{Univalence}.
|
||||
|
||||
Instance blah : Lattice (Sub A).
|
||||
Instance subobject_lattice : Lattice (Sub A).
|
||||
Proof.
|
||||
unfold Sub.
|
||||
apply _.
|
||||
Defined.
|
||||
|
||||
|
@ -101,3 +100,144 @@ Section intersect.
|
|||
apply (inl (tr (t2^ @ t1))).
|
||||
Defined.
|
||||
End intersect.
|
||||
|
||||
Section finite_hott.
|
||||
Variable A : Type.
|
||||
Context `{Univalence} `{IsHSet A}.
|
||||
|
||||
Definition finite (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
||||
|
||||
Definition singleton : closedSingleton finite.
|
||||
Proof.
|
||||
intros a.
|
||||
simple refine (Build_Finite _ _ _).
|
||||
- apply 1.
|
||||
- apply tr.
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
* apply (fun _ => inr tt).
|
||||
* simple refine (BuildIsEquiv _ _ _ _ _ _ _) ; unfold Sect in *.
|
||||
** apply (fun _ => (a;tr idpath)).
|
||||
** intros x ; destruct x as [ | x] ; try contradiction.
|
||||
destruct x ; reflexivity.
|
||||
** intros [b bp] ; simpl.
|
||||
strip_truncations.
|
||||
simple refine (path_sigma _ _ _ _ _).
|
||||
*** apply bp^.
|
||||
*** apply path_ishprop.
|
||||
** intros.
|
||||
apply path_ishprop.
|
||||
Defined.
|
||||
|
||||
Definition empty_finite : closedEmpty finite.
|
||||
Proof.
|
||||
simple refine (Build_Finite _ _ _).
|
||||
- apply 0.
|
||||
- apply tr.
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
intros [a p] ; apply p.
|
||||
Defined.
|
||||
|
||||
Definition decidable_empty_finite : hasDecidableEmpty finite.
|
||||
Proof.
|
||||
intros X Y.
|
||||
destruct Y as [n Xn].
|
||||
strip_truncations.
|
||||
simpl in Xn.
|
||||
destruct Xn as [f [g fg gf adj]].
|
||||
destruct n.
|
||||
- refine (tr(inl _)).
|
||||
unfold empty.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
apply path_iff_hprop.
|
||||
* intros p.
|
||||
contradiction (f(z;p)).
|
||||
* contradiction.
|
||||
- refine (tr(inr _)).
|
||||
apply (tr(g(inr tt))).
|
||||
Defined.
|
||||
|
||||
Lemma no_union
|
||||
(f : forall (X Y : Sub A),
|
||||
Finite {a : A & X a} -> Finite {a : A & Y a}
|
||||
-> Finite ({a : A & (X ∪ Y) a}))
|
||||
(a b : A)
|
||||
:
|
||||
hor (a = b) (a = b -> Empty).
|
||||
Proof.
|
||||
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||||
destruct f as [n pn].
|
||||
strip_truncations.
|
||||
destruct pn as [f [g fg gf adj]].
|
||||
unfold Sect in *.
|
||||
destruct n.
|
||||
- cbn in *. contradiction f.
|
||||
exists a.
|
||||
apply (tr(inl(tr idpath))).
|
||||
- destruct n ; cbn in *.
|
||||
-- pose ((a;tr(inl(tr idpath)))
|
||||
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||||
as s1.
|
||||
pose ((b;tr(inr(tr idpath)))
|
||||
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||||
as s2.
|
||||
pose (f s1) as fs1.
|
||||
pose (f s2) as fs2.
|
||||
assert (fs1 = fs2) as fs_eq.
|
||||
{ apply path_ishprop. }
|
||||
pose (g fs1) as gfs1.
|
||||
pose (g fs2) as gfs2.
|
||||
refine (tr(inl _)).
|
||||
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
||||
unfold fs1, fs2 in fs_eq. rewrite fs_eq.
|
||||
reflexivity.
|
||||
-- refine (tr(inr _)).
|
||||
intros p.
|
||||
pose (inl(inr tt) : Fin n + Unit + Unit) as s1.
|
||||
pose (inr tt : Fin n + Unit + Unit) as s2.
|
||||
pose (g s1) as gs1.
|
||||
pose (c := g s1).
|
||||
assert (c = gs1) as ps1. reflexivity.
|
||||
pose (g s2) as gs2.
|
||||
pose (d := g s2).
|
||||
assert (d = gs2) as ps2. reflexivity.
|
||||
pose (f gs1) as gfs1.
|
||||
pose (f gs2) as gfs2.
|
||||
destruct c as [x px] ; destruct d as [y py].
|
||||
simple refine (Trunc_ind _ _ px) ; intros p1.
|
||||
simple refine (Trunc_ind _ _ py) ; intros p2.
|
||||
simpl.
|
||||
assert (x = y -> Empty) as X1.
|
||||
{
|
||||
enough (s1 = s2) as X.
|
||||
{
|
||||
intros.
|
||||
unfold s1, s2 in X.
|
||||
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
||||
+ apply tt.
|
||||
+ rewrite X ; apply tt.
|
||||
}
|
||||
transitivity gfs1.
|
||||
{ unfold gfs1, s1. apply (fg s1)^. }
|
||||
symmetry ; transitivity gfs2.
|
||||
{ unfold gfs2, s2. apply (fg s2)^. }
|
||||
unfold gfs2, gfs1.
|
||||
rewrite <- ps1, <- ps2.
|
||||
f_ap.
|
||||
simple refine (path_sigma _ _ _ _ _).
|
||||
* cbn.
|
||||
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||||
** apply (p2 @ p1^).
|
||||
** refine (p2 @ _^ @ p1^). auto.
|
||||
** refine (p2 @ _ @ p1^). auto.
|
||||
** apply (p2 @ p1^).
|
||||
* apply path_ishprop.
|
||||
}
|
||||
apply X1.
|
||||
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||||
** apply (p1 @ p2^).
|
||||
** refine (p1 @ _ @ p2^). auto.
|
||||
** refine (p1 @ _ @ p2^). symmetry. auto.
|
||||
** apply (p1 @ p2^).
|
||||
Defined.
|
||||
End finite_hott.
|
Loading…
Reference in New Issue