mirror of https://github.com/nmvdw/HITs-Examples
Added proof that the finite sets in HoTTlibrary have no intersection and union
This commit is contained in:
parent
c358ef1659
commit
5233fc6de9
144
FiniteSets/Sub.v
144
FiniteSets/Sub.v
|
@ -24,9 +24,8 @@ Section sub_classes.
|
||||||
Variable C : (A -> hProp) -> hProp.
|
Variable C : (A -> hProp) -> hProp.
|
||||||
Context `{Univalence}.
|
Context `{Univalence}.
|
||||||
|
|
||||||
Instance blah : Lattice (Sub A).
|
Instance subobject_lattice : Lattice (Sub A).
|
||||||
Proof.
|
Proof.
|
||||||
unfold Sub.
|
|
||||||
apply _.
|
apply _.
|
||||||
Defined.
|
Defined.
|
||||||
|
|
||||||
|
@ -101,3 +100,144 @@ Section intersect.
|
||||||
apply (inl (tr (t2^ @ t1))).
|
apply (inl (tr (t2^ @ t1))).
|
||||||
Defined.
|
Defined.
|
||||||
End intersect.
|
End intersect.
|
||||||
|
|
||||||
|
Section finite_hott.
|
||||||
|
Variable A : Type.
|
||||||
|
Context `{Univalence} `{IsHSet A}.
|
||||||
|
|
||||||
|
Definition finite (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
||||||
|
|
||||||
|
Definition singleton : closedSingleton finite.
|
||||||
|
Proof.
|
||||||
|
intros a.
|
||||||
|
simple refine (Build_Finite _ _ _).
|
||||||
|
- apply 1.
|
||||||
|
- apply tr.
|
||||||
|
simple refine (BuildEquiv _ _ _ _).
|
||||||
|
* apply (fun _ => inr tt).
|
||||||
|
* simple refine (BuildIsEquiv _ _ _ _ _ _ _) ; unfold Sect in *.
|
||||||
|
** apply (fun _ => (a;tr idpath)).
|
||||||
|
** intros x ; destruct x as [ | x] ; try contradiction.
|
||||||
|
destruct x ; reflexivity.
|
||||||
|
** intros [b bp] ; simpl.
|
||||||
|
strip_truncations.
|
||||||
|
simple refine (path_sigma _ _ _ _ _).
|
||||||
|
*** apply bp^.
|
||||||
|
*** apply path_ishprop.
|
||||||
|
** intros.
|
||||||
|
apply path_ishprop.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition empty_finite : closedEmpty finite.
|
||||||
|
Proof.
|
||||||
|
simple refine (Build_Finite _ _ _).
|
||||||
|
- apply 0.
|
||||||
|
- apply tr.
|
||||||
|
simple refine (BuildEquiv _ _ _ _).
|
||||||
|
intros [a p] ; apply p.
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Definition decidable_empty_finite : hasDecidableEmpty finite.
|
||||||
|
Proof.
|
||||||
|
intros X Y.
|
||||||
|
destruct Y as [n Xn].
|
||||||
|
strip_truncations.
|
||||||
|
simpl in Xn.
|
||||||
|
destruct Xn as [f [g fg gf adj]].
|
||||||
|
destruct n.
|
||||||
|
- refine (tr(inl _)).
|
||||||
|
unfold empty.
|
||||||
|
apply path_forall.
|
||||||
|
intro z.
|
||||||
|
apply path_iff_hprop.
|
||||||
|
* intros p.
|
||||||
|
contradiction (f(z;p)).
|
||||||
|
* contradiction.
|
||||||
|
- refine (tr(inr _)).
|
||||||
|
apply (tr(g(inr tt))).
|
||||||
|
Defined.
|
||||||
|
|
||||||
|
Lemma no_union
|
||||||
|
(f : forall (X Y : Sub A),
|
||||||
|
Finite {a : A & X a} -> Finite {a : A & Y a}
|
||||||
|
-> Finite ({a : A & (X ∪ Y) a}))
|
||||||
|
(a b : A)
|
||||||
|
:
|
||||||
|
hor (a = b) (a = b -> Empty).
|
||||||
|
Proof.
|
||||||
|
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||||||
|
destruct f as [n pn].
|
||||||
|
strip_truncations.
|
||||||
|
destruct pn as [f [g fg gf adj]].
|
||||||
|
unfold Sect in *.
|
||||||
|
destruct n.
|
||||||
|
- cbn in *. contradiction f.
|
||||||
|
exists a.
|
||||||
|
apply (tr(inl(tr idpath))).
|
||||||
|
- destruct n ; cbn in *.
|
||||||
|
-- pose ((a;tr(inl(tr idpath)))
|
||||||
|
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||||||
|
as s1.
|
||||||
|
pose ((b;tr(inr(tr idpath)))
|
||||||
|
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||||||
|
as s2.
|
||||||
|
pose (f s1) as fs1.
|
||||||
|
pose (f s2) as fs2.
|
||||||
|
assert (fs1 = fs2) as fs_eq.
|
||||||
|
{ apply path_ishprop. }
|
||||||
|
pose (g fs1) as gfs1.
|
||||||
|
pose (g fs2) as gfs2.
|
||||||
|
refine (tr(inl _)).
|
||||||
|
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
||||||
|
unfold fs1, fs2 in fs_eq. rewrite fs_eq.
|
||||||
|
reflexivity.
|
||||||
|
-- refine (tr(inr _)).
|
||||||
|
intros p.
|
||||||
|
pose (inl(inr tt) : Fin n + Unit + Unit) as s1.
|
||||||
|
pose (inr tt : Fin n + Unit + Unit) as s2.
|
||||||
|
pose (g s1) as gs1.
|
||||||
|
pose (c := g s1).
|
||||||
|
assert (c = gs1) as ps1. reflexivity.
|
||||||
|
pose (g s2) as gs2.
|
||||||
|
pose (d := g s2).
|
||||||
|
assert (d = gs2) as ps2. reflexivity.
|
||||||
|
pose (f gs1) as gfs1.
|
||||||
|
pose (f gs2) as gfs2.
|
||||||
|
destruct c as [x px] ; destruct d as [y py].
|
||||||
|
simple refine (Trunc_ind _ _ px) ; intros p1.
|
||||||
|
simple refine (Trunc_ind _ _ py) ; intros p2.
|
||||||
|
simpl.
|
||||||
|
assert (x = y -> Empty) as X1.
|
||||||
|
{
|
||||||
|
enough (s1 = s2) as X.
|
||||||
|
{
|
||||||
|
intros.
|
||||||
|
unfold s1, s2 in X.
|
||||||
|
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
||||||
|
+ apply tt.
|
||||||
|
+ rewrite X ; apply tt.
|
||||||
|
}
|
||||||
|
transitivity gfs1.
|
||||||
|
{ unfold gfs1, s1. apply (fg s1)^. }
|
||||||
|
symmetry ; transitivity gfs2.
|
||||||
|
{ unfold gfs2, s2. apply (fg s2)^. }
|
||||||
|
unfold gfs2, gfs1.
|
||||||
|
rewrite <- ps1, <- ps2.
|
||||||
|
f_ap.
|
||||||
|
simple refine (path_sigma _ _ _ _ _).
|
||||||
|
* cbn.
|
||||||
|
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||||||
|
** apply (p2 @ p1^).
|
||||||
|
** refine (p2 @ _^ @ p1^). auto.
|
||||||
|
** refine (p2 @ _ @ p1^). auto.
|
||||||
|
** apply (p2 @ p1^).
|
||||||
|
* apply path_ishprop.
|
||||||
|
}
|
||||||
|
apply X1.
|
||||||
|
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||||||
|
** apply (p1 @ p2^).
|
||||||
|
** refine (p1 @ _ @ p2^). auto.
|
||||||
|
** refine (p1 @ _ @ p2^). symmetry. auto.
|
||||||
|
** apply (p1 @ p2^).
|
||||||
|
Defined.
|
||||||
|
End finite_hott.
|
Loading…
Reference in New Issue