czf/czf.v

330 lines
8.7 KiB
Coq
Raw Normal View History

2019-01-21 17:31:20 +01:00
From stdpp Require Import base.
(** * Cumulative hierarchy *)
Inductive V : Type :=
sup : forall (A : Set) (f : A -> V), V.
Definition ind (a : V) : Set :=
match a with
| sup A f => A
end.
Definition branch (a : V) : ind a -> V :=
match a with
| sup A f => f
end.
(** * Equality *)
2019-01-21 18:15:33 +01:00
Instance set_eq : Equiv V :=
fix go a b : Prop :=
let _ : Equiv V := @go in
match a, b with
| sup A f, sup B g =>
( x:A, y: B, f x g y) ( y:B, x: A, f x g y)
2019-01-21 17:31:20 +01:00
end.
2019-01-21 18:15:33 +01:00
Lemma eq1 : forall (x : V), x x.
2019-01-21 17:31:20 +01:00
Proof.
intros. induction x.
split; intros; [exists x | exists y]; apply H.
Qed.
2019-01-21 18:15:33 +01:00
Lemma eq2 : forall (x y : V), x y -> y x.
2019-01-21 17:31:20 +01:00
Proof.
intro x. induction x as [A f IHx].
intro y. destruct y as [B g].
intros [F1 F2].
split; intros.
(* Case 1 *)
destruct (F2 x) as [x0 ?].
exists x0. apply (IHx x0 (g x)). assumption.
(* Case 2 *)
destruct (F1 y) as [y0 ?].
exists y0. apply (IHx y (g y0)). assumption.
Qed.
2019-01-21 18:15:33 +01:00
Lemma eq3 : forall (x y z : V), xy -> yz -> xz.
2019-01-21 17:31:20 +01:00
Proof.
intro. induction x as [A f X].
intro. destruct y as [B g].
intro. destruct z as [C h].
intros [P0 P1] [Q0 Q1].
split; intro.
- (* Case 1 *)
destruct (P0 x) as [y L0].
destruct (Q0 y) as [z L1].
exists z. apply (X x (g y) (h z)); assumption.
- (* Case 2 *)
destruct (Q1 y) as [y0 L0].
destruct (P1 y0) as [z L1].
exists z. apply (X z (g y0) (h y)); assumption.
Qed.
2019-01-21 18:15:33 +01:00
Instance set_eq_refl : Reflexive set_eq := eq1.
Instance set_eq_sym : Symmetric set_eq := eq2.
Instance set_eq_trans : Transitive set_eq := eq3.
Instance set_eq_equivalence : Equivalence set_eq.
2019-01-21 17:31:20 +01:00
Proof. split; apply _. Qed.
Lemma set_eq_unfold a b :
(a b) =
((forall (x:ind a), exists (y: ind b), ((branch a x) (branch b y)))
/\ (forall (y:ind b), exists (x: ind a), ((branch a x) (branch b y)))).
Proof.
destruct a, b; reflexivity.
Qed.
2019-01-21 18:47:18 +01:00
Instance sup_proper A : Proper (((=) ==> ()) ==> ()) (sup A).
Proof. intros f f' Hf. split; eauto. Qed.
2019-01-21 17:31:20 +01:00
(** * Membership *)
Instance elem_of_V : ElemOf V V := λ (a b : V),
exists (y : ind b), a (branch b y).
2019-01-21 18:15:33 +01:00
Instance elem_of_V_proper : Proper (() ==> () ==> (impl)) elem_of_V.
Proof.
intros a a' Ha b b' Hb.
intros [y Hy].
destruct b as [B g].
destruct b' as [B' g'].
simpl in *.
destruct Hb as [i1 i2].
destruct (i1 y) as [y' Hy'].
exists y'. simpl. rewrite <- Hy'.
rewrite <- Ha. apply Hy.
Qed.
2019-01-21 17:31:20 +01:00
2019-01-21 18:15:33 +01:00
(* Here we have to use `elem_of` instead of `elem_of_V` *)
Instance Acc_elem_of_proper : Proper (() ==> (impl)) (Acc (elem_of : V -> V -> Prop)).
2019-01-21 17:31:20 +01:00
Proof.
intros a a' Ha.
intros acc.
revert a' Ha.
induction acc as [a acc IH].
intros a' Ha.
rewrite set_eq_unfold in Ha.
destruct Ha as [i1 i2].
constructor. intros x' [y' Hx'].
eapply IH. 2:{ reflexivity. }
2019-01-21 18:15:33 +01:00
rewrite Hx'.
(* erewrite (elem_of_V_proper x' (branch a' y')); eauto. *)
2019-01-21 17:31:20 +01:00
destruct (i2 y') as [y Hy].
exists y. symmetry. apply Hy.
Qed.
(** The cumulative hierarchy is well-founded *)
Lemma V_wf : well_founded elem_of_V.
Proof.
unfold well_founded.
induction a as [A f IH].
constructor. intros y [a Hy]. cbn in Hy.
rewrite Hy.
apply IH.
Qed.
(** * Set formers *)
2019-01-21 18:47:18 +01:00
(** *** Empty set *)
2019-01-21 17:31:20 +01:00
Instance empty_V : Empty V :=
sup Empty_set (Empty_set_rect _).
2019-01-21 18:47:18 +01:00
(** *** Singleton *)
Instance singleton_V : Singleton V V := λ x,
sup unit (λ _, x).
Instance singleton_proper : Proper (() ==> ()) (singleton : V V).
Proof.
intros x x' Hx.
unfold singleton, singleton_V. f_equiv.
intros ??. eauto.
Qed.
(** *** Union *)
Instance union_V : Union V := λ a b,
match (a, b) with
| (sup A f, sup B g) =>
sup (A + B) (λ x, match x with
| inl a => f a
| inr b => g b
end)
end.
Instance union_proper : Proper (() ==> () ==> ()) (union : V V V).
Proof.
intros [A f] [A' f'] [i1 i2] [B g] [B' g'] [j1 j2].
cbn. split.
- intros [a|b].
+ destruct (i1 a) as [a' Ha].
exists (inl a'). assumption.
+ destruct (j1 b) as [b' Hb].
exists (inr b'). assumption.
- intros [a|b].
+ destruct (i2 a) as [a' Ha].
exists (inl a'). assumption.
+ destruct (j2 b) as [b' Hb].
exists (inr b'). assumption.
Qed.
(** *** Natural numbers *)
Fixpoint delta (n:nat) : V :=
match n with
| O =>
| S x => (delta x) {[ delta x ]}
end.
Definition NN : V := sup nat delta.
(** * Extensionality *)
Instance subseteq_V : SubsetEq V := λ a b,
forall x, x a x b.
2019-01-21 17:31:20 +01:00
2019-01-21 18:47:18 +01:00
Instance subseteq_proper : Proper (() ==> () ==> impl) (subseteq : relation V).
Proof.
intros a a' Ha b b' Hb.
unfold subseteq, subseteq_V. intros Hs x.
rewrite <- Ha. rewrite <- Hb. apply Hs.
Qed.
2019-01-22 11:20:15 +01:00
Instance subseteq_reflexive : Reflexive (subseteq : relation V).
Proof. intros ?. unfold subseteq, subseteq_V. auto. Qed.
Instance subseteq_transitive : Transitive (subseteq : relation V).
Proof. intros ???. unfold subseteq, subseteq_V. auto. Qed.
2019-01-21 18:47:18 +01:00
Lemma V_ext (a b : V) :
a b b a a b.
Proof.
destruct a as [A f]. destruct b as [B g].
intros HAB HBA. split.
- intros x. apply HAB.
exists x. reflexivity.
- intros y.
assert (g y sup B g) as Hgy. { exists y. reflexivity. }
destruct (HBA (g y) Hgy) as [x Hx].
exists x. symmetry. apply Hx.
Qed.
2019-01-21 19:12:17 +01:00
(** * Axioms *)
2019-01-22 12:12:46 +01:00
(** First, we define a class of set predicates: predicates that respect the equality on V *)
Class SetPredicate (ϕ : V Prop) :=
pred_proper :> Proper (() ==> impl) ϕ.
2019-01-21 19:12:17 +01:00
(** Extensionality *)
2019-01-22 11:20:15 +01:00
Theorem CZF_extensionality (a b : V) :
a b b a a b.
Proof.
split.
- intros [? ?]. apply V_ext; auto.
- intros ->. split; auto.
Qed.
2019-01-21 19:12:17 +01:00
(** Paring *)
2019-01-22 12:12:46 +01:00
Theorem CZF_pairing (x y : V) :
2019-01-21 19:12:17 +01:00
forall (w : V), w ({[x; y]} : V)
w x w y.
Proof.
intros w. split.
- intros [[?|?] ?]; eauto.
- intros [Hw|Hw].
+ exists (inl ()). eauto.
+ exists (inr ()). eauto.
Qed.
(** Union *)
(* TODO: need big union operation *)
(** Empty set *)
2019-01-22 12:12:46 +01:00
Theorem CZF_empty :
2019-01-21 19:12:17 +01:00
forall y, ¬ (y ( : V)).
Proof. intros ? [[] ?]. Qed.
2019-01-22 12:12:46 +01:00
(** Set Induction *)
Theorem CZF_induction ϕ `{SetPredicate ϕ} :
(forall x, (forall y, y x ϕ y) ϕ x) (forall x, ϕ x).
Proof.
intros x.
induction x as [A f IH].
apply .
intros y [a ->]. apply IH.
Qed.
2019-01-21 19:12:17 +01:00
(** Infinity *)
Definition suc (x : V) := x {[x]}.
2019-01-22 12:12:46 +01:00
Theorem CZF_infinity :
2019-01-21 19:12:17 +01:00
NN (forall y, y NN suc y NN).
Proof.
split.
- exists 0. reflexivity.
- intros y [n Hn]. exists (S n).
unfold suc. rewrite Hn.
reflexivity.
Qed.
(** Separation *)
Definition sep (a : V) (ϕ : V Prop) : V.
Proof.
destruct a as [A f].
refine (sup (sigT (λ (x:A), ϕ (f x))) _).
intros [x ?]. exact (f x).
Defined.
2019-01-22 12:12:46 +01:00
(* Note that we have non-restricted separation *)
Theorem CZF_separation a ϕ `{SetPredicate ϕ} :
2019-01-21 19:12:17 +01:00
forall y, (y sep a ϕ y a ϕ y).
Proof.
intros y. destruct a as [A f]. split.
- intros [[x ] Hx]. simpl in *.
rewrite Hx. split; [exists x|]; eauto.
- intros [[x Hx] ]. simpl in *.
rewrite Hx in .
exists (existT x ). assumption.
Qed.
2019-01-22 12:12:46 +01:00
(** Collection *)
(** Collection holds only if we use types-as-proposition
interpretation, by using Σ-types (landing in Type) instead of
(landing in Prop). Curiously, the predicate ϕ doesn't have to be
proper. *)
Definition coll (a : V) (ϕ : V V Prop) :
(forall (x : V), x a { y | ϕ x y })
V.
Proof.
intros .
destruct a as [A f].
refine (sup A _).
intros x.
assert (f x sup A f) as Hfx. { exists x; reflexivity. }
exact (proj1_sig ( (f x) Hfx)).
Defined.
(* ∀a[∀x∈a ∃y φ(x,y) → ∃b∀x∈a ∃y∈b φ(x,y)] *)
Theorem CZF_collection (a : V) (ϕ : V V Prop)
`{Proper _ (() ==> () ==> (impl)) ϕ} :
(forall (x : V), x a { y | ϕ x y })
exists (b : V), (forall (x : V), x a exists y, y b ϕ x y ).
Proof.
intros .
exists (coll a ϕ ). intros xx Hxx.
destruct a as [A f].
destruct Hxx as [x Hx]. simpl in *.
set (Hϕ':= (f x) (ex_intro (λ y, f x f y) x (reflexivity _))).
exists (proj1_sig Hϕ'). split.
2: { rewrite Hx. apply (proj2_sig Hϕ'). }
exists x. cbn. reflexivity.
Qed.
2019-01-22 13:51:22 +01:00
Theorem CZF_collection_stong (a : V) (ϕ : V V Prop)
`{Proper _ (() ==> () ==> (impl)) ϕ} :
(forall (x : V), x a { y | ϕ x y })
exists (b : V), (forall (y : V), y b exists x, x a ϕ x y ).
Proof.
intros .
exists (coll a ϕ ). intros yy Hyy.
destruct a as [A f].
destruct Hyy as [y Hy]. simpl in *.
exists (f y). split.
{ exists y. reflexivity. }
rewrite Hy.
set (Hϕ':= (f y) (ex_intro (λ z, f y f z) y (reflexivity _))).
apply (proj2_sig Hϕ').
Qed.