2017-08-07 12:20:43 +02:00
|
|
|
|
Require Import HoTT.
|
|
|
|
|
Require Import FSets.
|
|
|
|
|
|
|
|
|
|
Section interface.
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
Variable (T : Type -> Type)
|
|
|
|
|
(f : forall A, T A -> FSet A).
|
2017-08-08 17:06:53 +02:00
|
|
|
|
Context `{forall A, hasMembership (T A) A
|
|
|
|
|
, forall A, hasEmpty (T A)
|
|
|
|
|
, forall A, hasSingleton (T A) A
|
|
|
|
|
, forall A, hasUnion (T A)
|
|
|
|
|
, forall A, hasComprehension (T A) A}.
|
2017-08-07 12:20:43 +02:00
|
|
|
|
|
|
|
|
|
Class sets :=
|
|
|
|
|
{
|
2017-08-08 17:06:53 +02:00
|
|
|
|
f_empty : forall A, f A ∅ = ∅ ;
|
2017-08-07 16:49:46 +02:00
|
|
|
|
f_singleton : forall A a, f A (singleton a) = {|a|};
|
|
|
|
|
f_union : forall A X Y, f A (union X Y) = (f A X) ∪ (f A Y);
|
2017-08-08 17:06:53 +02:00
|
|
|
|
f_filter : forall A φ X, f A (filter φ X) = {| f A X & φ |};
|
2017-08-07 16:49:46 +02:00
|
|
|
|
f_member : forall A a X, member a X = a ∈ (f A X)
|
2017-08-07 12:20:43 +02:00
|
|
|
|
}.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance f_surjective A `{sets} : IsSurjection (f A).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold IsSurjection.
|
|
|
|
|
hinduction ; try (intros ; apply path_ishprop).
|
|
|
|
|
- simple refine (BuildContr _ _ _).
|
2017-08-15 22:05:31 +02:00
|
|
|
|
* refine (tr(∅;_)).
|
2017-08-15 20:08:16 +02:00
|
|
|
|
apply f_empty.
|
|
|
|
|
* intros ; apply path_ishprop.
|
|
|
|
|
- intro a.
|
|
|
|
|
simple refine (BuildContr _ _ _).
|
|
|
|
|
* refine (tr({|a|};_)).
|
|
|
|
|
apply f_singleton.
|
|
|
|
|
* intros ; apply path_ishprop.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
- intros Y1 Y2 [X1' ?] [X2' ?].
|
2017-08-15 20:08:16 +02:00
|
|
|
|
simple refine (BuildContr _ _ _).
|
2017-08-15 22:05:31 +02:00
|
|
|
|
* simple refine (Trunc_rec _ X1') ; intros [X1 fX1].
|
|
|
|
|
simple refine (Trunc_rec _ X2') ; intros [X2 fX2].
|
2017-08-15 20:08:16 +02:00
|
|
|
|
refine (tr(X1 ∪ X2;_)).
|
|
|
|
|
rewrite f_union, fX1, fX2.
|
|
|
|
|
reflexivity.
|
|
|
|
|
* intros ; apply path_ishprop.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-07 14:55:07 +02:00
|
|
|
|
End interface.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Section quotient_surjection.
|
|
|
|
|
Variable (A B : Type)
|
|
|
|
|
(f : A -> B)
|
|
|
|
|
(H : IsSurjection f).
|
|
|
|
|
Context `{IsHSet B} `{Univalence}.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition f_eq : relation A := fun a1 a2 => f a1 = f a2.
|
|
|
|
|
Definition quotientB : Type := quotient f_eq.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance quotientB_recursion : HitRecursion quotientB :=
|
|
|
|
|
{
|
|
|
|
|
indTy := _;
|
|
|
|
|
recTy :=
|
|
|
|
|
forall (P : Type) (HP: IsHSet P) (u : A -> P),
|
|
|
|
|
(forall x y : A, f_eq x y -> u x = u y) -> quotientB -> P;
|
|
|
|
|
H_inductor := quotient_ind f_eq ;
|
|
|
|
|
H_recursor := @quotient_rec _ f_eq _
|
|
|
|
|
}.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance R_refl : Reflexive f_eq.
|
|
|
|
|
Proof.
|
|
|
|
|
intro.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance R_sym : Symmetric f_eq.
|
|
|
|
|
Proof.
|
|
|
|
|
intros a b Hab.
|
|
|
|
|
apply (Hab^).
|
|
|
|
|
Defined.
|
2017-08-08 13:18:45 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance R_trans : Transitive f_eq.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
intros a b c Hab Hbc.
|
|
|
|
|
apply (Hab @ Hbc).
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition quotientB_to_B : quotientB -> B.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
hrecursion.
|
|
|
|
|
- apply f.
|
|
|
|
|
- done.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Instance quotientB_emb : IsEmbedding (quotientB_to_B).
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
apply isembedding_isinj_hset.
|
|
|
|
|
unfold isinj.
|
|
|
|
|
hrecursion ; [ | intros; apply path_ishprop ].
|
|
|
|
|
intro.
|
|
|
|
|
hrecursion ; [ | intros; apply path_ishprop ].
|
|
|
|
|
intros.
|
|
|
|
|
by apply related_classes_eq.
|
|
|
|
|
Defined.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Instance quotientB_surj : IsSurjection (quotientB_to_B).
|
|
|
|
|
Proof.
|
|
|
|
|
apply BuildIsSurjection.
|
|
|
|
|
intros Y.
|
|
|
|
|
destruct (H Y).
|
2017-08-15 22:05:31 +02:00
|
|
|
|
simple refine (Trunc_rec _ center) ; intros [a fa].
|
|
|
|
|
apply (tr(class_of _ a;fa)).
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition quotient_iso : quotientB <~> B.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
refine (BuildEquiv _ _ quotientB_to_B _).
|
2017-08-15 22:05:31 +02:00
|
|
|
|
apply isequiv_surj_emb ; apply _.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition reflect_eq : forall (X Y : A),
|
|
|
|
|
f X = f Y -> f_eq X Y.
|
|
|
|
|
Proof.
|
|
|
|
|
done.
|
|
|
|
|
Defined.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Lemma same_class : forall (X Y : A),
|
|
|
|
|
class_of f_eq X = class_of f_eq Y -> f_eq X Y.
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
simple refine (classes_eq_related _ _ _ _) ; assumption.
|
|
|
|
|
Defined.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
End quotient_surjection.
|
|
|
|
|
|
|
|
|
|
Ltac reduce T :=
|
|
|
|
|
intros ;
|
|
|
|
|
repeat (rewrite (f_empty T _)
|
|
|
|
|
|| rewrite (f_singleton T _)
|
|
|
|
|
|| rewrite (f_union T _)
|
|
|
|
|
|| rewrite (f_filter T _)
|
|
|
|
|
|| rewrite (f_member T _)).
|
|
|
|
|
Ltac simplify T := intros ; autounfold in * ; apply reflect_eq ; reduce T.
|
|
|
|
|
Ltac reflect_equality T := simplify T ; eauto with lattice_hints typeclass_instances.
|
|
|
|
|
Ltac reflect_eq T := autounfold
|
|
|
|
|
; repeat (hinduction ; try (intros ; apply path_ishprop) ; intro)
|
|
|
|
|
; apply related_classes_eq
|
|
|
|
|
; reflect_equality T.
|
|
|
|
|
|
|
|
|
|
Section quotient_properties.
|
|
|
|
|
Variable (T : Type -> Type).
|
|
|
|
|
Variable (f : forall {A : Type}, T A -> FSet A).
|
|
|
|
|
Context `{sets T f}.
|
2017-08-07 15:39:01 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition set_eq A := f_eq (T A) (FSet A) (f A).
|
|
|
|
|
Definition View A : Type := quotientB (T A) (FSet A) (f A).
|
2017-08-15 22:05:31 +02:00
|
|
|
|
|
2017-08-15 22:26:26 +02:00
|
|
|
|
Definition View_rec2 {A} (P : Type) (HP : IsHSet P) (u : T A -> T A -> P)
|
|
|
|
|
(Hresp : forall (x x' y y': T A), set_eq A x x' -> set_eq A y y' -> u x y = u x' y')
|
|
|
|
|
: forall (x y : View A), P.
|
|
|
|
|
Proof.
|
|
|
|
|
unfold View ; hrecursion.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
- intros a.
|
|
|
|
|
hrecursion.
|
2017-08-15 22:26:26 +02:00
|
|
|
|
+ apply (u a).
|
|
|
|
|
+ intros b b' Hbb'.
|
|
|
|
|
apply Hresp.
|
|
|
|
|
++ reflexivity.
|
|
|
|
|
++ assumption.
|
|
|
|
|
- intros ; simpl.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
red.
|
|
|
|
|
hinduction ; try (intros ; apply path_ishprop).
|
|
|
|
|
intros b.
|
|
|
|
|
apply Hresp.
|
|
|
|
|
++ assumption.
|
|
|
|
|
++ reflexivity.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Defined.
|
2017-08-07 15:39:01 +02:00
|
|
|
|
|
2017-08-14 21:38:50 +02:00
|
|
|
|
Definition well_defined_union (A : Type) (X1 X2 Y1 Y2 : T A) :
|
2017-08-08 13:18:45 +02:00
|
|
|
|
set_eq A X1 Y1 -> set_eq A X2 Y2 -> set_eq A (union X1 X2) (union Y1 Y2).
|
2017-08-07 15:39:01 +02:00
|
|
|
|
Proof.
|
2017-08-14 21:38:50 +02:00
|
|
|
|
intros HXY1 HXY2.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
simplify T.
|
2017-08-08 13:18:45 +02:00
|
|
|
|
by rewrite HXY1, HXY2.
|
2017-08-07 15:39:01 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-14 21:38:50 +02:00
|
|
|
|
Definition well_defined_filter (A : Type) (ϕ : A -> Bool) (X Y : T A) :
|
2017-08-08 13:18:45 +02:00
|
|
|
|
set_eq A X Y -> set_eq A (filter ϕ X) (filter ϕ Y).
|
2017-08-09 18:05:58 +02:00
|
|
|
|
Proof.
|
2017-08-14 21:38:50 +02:00
|
|
|
|
intros HXY.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
simplify T.
|
2017-08-08 13:18:45 +02:00
|
|
|
|
by rewrite HXY.
|
2017-08-07 15:39:01 +02:00
|
|
|
|
Defined.
|
2017-08-09 18:05:58 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance View_member A: hasMembership (View A) A.
|
|
|
|
|
Proof.
|
|
|
|
|
intros a ; unfold View.
|
|
|
|
|
hrecursion.
|
|
|
|
|
- apply (member a).
|
|
|
|
|
- intros X Y HXY.
|
|
|
|
|
reduce T.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
apply (ap _ HXY).
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance View_empty A: hasEmpty (View A).
|
|
|
|
|
Proof.
|
|
|
|
|
apply (class_of _ ∅).
|
|
|
|
|
Defined.
|
2017-08-14 21:38:50 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance View_singleton A: hasSingleton (View A) A.
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
intros a.
|
|
|
|
|
apply (class_of _ {|a|}).
|
2017-08-07 14:55:07 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Instance View_max A : maximum (View A).
|
2017-08-08 17:06:53 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
simple refine (View_rec2 _ _ _ _).
|
|
|
|
|
- intros a b.
|
|
|
|
|
apply (class_of _ (union a b)).
|
|
|
|
|
- intros x x' Hxx' y y' Hyy' ; simpl.
|
|
|
|
|
apply related_classes_eq.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
eapply well_defined_union ; eauto.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance View_union A: hasUnion (View A).
|
2017-08-08 17:06:53 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
apply max_L.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Global Instance View_comprehension A: hasComprehension (View A) A.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
Proof.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
intros ϕ ; unfold View.
|
|
|
|
|
hrecursion.
|
|
|
|
|
- intros X.
|
|
|
|
|
apply (class_of _ (filter ϕ X)).
|
|
|
|
|
- intros X X' HXX' ; simpl.
|
|
|
|
|
apply related_classes_eq.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
eapply well_defined_filter ; eauto.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Hint Unfold Commutative Associative Idempotent NeutralL NeutralR.
|
|
|
|
|
|
|
|
|
|
Instance bottom_view A : bottom (View A).
|
|
|
|
|
Proof.
|
|
|
|
|
unfold bottom.
|
|
|
|
|
apply ∅.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance view_lattice A : JoinSemiLattice (View A).
|
|
|
|
|
Proof.
|
|
|
|
|
split ; reflect_eq T.
|
|
|
|
|
Defined.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
End quotient_properties.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Arguments set_eq {_} _ {_} _ _.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Section properties.
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
Variable (T : Type -> Type) (f : forall A, T A -> FSet A).
|
|
|
|
|
Context `{sets T f}.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition set_subset : forall A, T A -> T A -> hProp :=
|
|
|
|
|
fun A X Y => (f A X) ⊆ (f A Y).
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition empty_isIn : forall (A : Type) (a : A),
|
|
|
|
|
a ∈ ∅ = False_hp.
|
|
|
|
|
Proof.
|
|
|
|
|
by (reduce T).
|
|
|
|
|
Defined.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition singleton_isIn : forall (A : Type) (a b : A),
|
|
|
|
|
a ∈ {|b|} = merely (a = b).
|
|
|
|
|
Proof.
|
|
|
|
|
by (reduce T).
|
|
|
|
|
Defined.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition union_isIn : forall (A : Type) (a : A) (X Y : T A),
|
|
|
|
|
a ∈ (X ∪ Y) = lor (a ∈ X) (a ∈ Y).
|
|
|
|
|
Proof.
|
|
|
|
|
by (reduce T).
|
|
|
|
|
Defined.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition filter_isIn : forall (A : Type) (a : A) (ϕ : A -> Bool) (X : T A),
|
|
|
|
|
member a (filter ϕ X) = if ϕ a then member a X else False_hp.
|
|
|
|
|
Proof.
|
|
|
|
|
reduce T.
|
|
|
|
|
apply properties.comprehension_isIn.
|
|
|
|
|
Defined.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Definition reflect_f_eq : forall (A : Type) (X Y : T A),
|
|
|
|
|
class_of (set_eq f) X = class_of (set_eq f) Y -> set_eq f X Y.
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
refine (same_class _ _ _ _ _ _) ; assumption.
|
|
|
|
|
Defined.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Lemma class_union (A : Type) (X Y : T A) :
|
|
|
|
|
class_of (set_eq f) (X ∪ Y) = (class_of (set_eq f) X) ∪ (class_of (set_eq f) Y).
|
|
|
|
|
Proof.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
|
2017-08-15 20:08:16 +02:00
|
|
|
|
Lemma class_filter (A : Type) (X : T A) (ϕ : A -> Bool) :
|
|
|
|
|
class_of (set_eq f) ({|X & ϕ|}) = {|(class_of (set_eq f) X) & ϕ|}.
|
|
|
|
|
Proof.
|
2017-08-08 17:06:53 +02:00
|
|
|
|
reflexivity.
|
2017-08-15 22:05:31 +02:00
|
|
|
|
Defined.
|
2017-08-15 20:08:16 +02:00
|
|
|
|
|
|
|
|
|
Ltac via_quotient := intros ; apply reflect_f_eq
|
|
|
|
|
; rewrite ?class_union, ?class_filter
|
|
|
|
|
; eauto with lattice_hints typeclass_instances.
|
|
|
|
|
|
|
|
|
|
Lemma union_comm : forall A (X Y : T A),
|
|
|
|
|
set_eq f (X ∪ Y) (Y ∪ X).
|
|
|
|
|
Proof.
|
|
|
|
|
via_quotient.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma union_assoc : forall A (X Y Z : T A),
|
|
|
|
|
set_eq f ((X ∪ Y) ∪ Z) (X ∪ (Y ∪ Z)).
|
|
|
|
|
Proof.
|
|
|
|
|
via_quotient.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma union_idem : forall A (X : T A),
|
|
|
|
|
set_eq f (X ∪ X) X.
|
|
|
|
|
Proof.
|
|
|
|
|
via_quotient.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma union_neutral : forall A (X : T A),
|
|
|
|
|
set_eq f (∅ ∪ X) X.
|
|
|
|
|
Proof.
|
|
|
|
|
via_quotient.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End properties.
|