HITs-Examples/FiniteSets/variations/b_finite.v

518 lines
16 KiB
Coq
Raw Normal View History

(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
2017-08-24 16:50:11 +02:00
Require Import HoTT HitTactics plumbing.
Require Import Sub notation variations.k_finite.
Require Import fsets.properties.
Section finite_hott.
Variable (A : Type).
Context `{Univalence}.
(* A subobject is B-finite if its extension is B-finite as a type *)
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Global Instance singleton_contr a `{IsHSet A} : Contr {b : A & b {|a|}}.
Proof.
exists (a; tr idpath).
intros [b p].
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
clear p; intro p. simpl.
apply path_sigma_hprop; simpl.
apply p^.
Defined.
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b {|a|}}.
Proof.
intros _. apply (a; tr idpath).
Defined.
Global Instance singleton_fin_equiv a `{IsHSet A} : IsEquiv (singleton_fin_equiv' a).
Proof. apply _. Defined.
Definition singleton `{IsHSet A} : closedSingleton Bfin.
Proof.
intros a.
simple refine (Build_Finite _ 1 _).
apply tr.
symmetry.
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
Defined.
Definition empty_finite : closedEmpty Bfin.
Proof.
simple refine (Build_Finite _ 0 _).
apply tr.
simple refine (BuildEquiv _ _ _ _).
intros [a p]; apply p.
Defined.
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
Proof.
intros X Y.
destruct Y as [n f].
strip_truncations.
destruct n.
- refine (tr(inl _)).
apply path_forall. intro z.
apply path_iff_hprop.
* intros p.
contradiction (f (z;p)).
* contradiction.
- refine (tr(inr _)).
apply (tr(f^-1(inr tt))).
Defined.
Lemma no_union `{IsHSet A}
(f : forall (X Y : Sub A),
Bfin X -> Bfin Y -> Bfin (X Y))
(a b : A) :
hor (a = b) (a = b -> Empty).
Proof.
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
unfold Bfin in f.
destruct f as [n pn].
strip_truncations.
destruct pn as [f [g fg gf _]].
destruct n as [|n].
unfold Sect in *.
- contradiction f.
exists a. apply (tr(inl(tr idpath))).
- destruct n as [|n].
+ (* If the size of the union is 1, then (a = b) *)
refine (tr (inl _)).
pose (s1 := (a;tr(inl(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
pose (s2 := (b;tr(inr(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
assert (fs_eq : f s1 = f s2).
{ by apply path_ishprop. }
refine (ap (fun x => (g x).1) fs_eq).
+ (* Otherwise, ¬(a = b) *)
refine (tr (inr _)).
intros p.
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
pose (s2 := inr tt : Fin n + Unit + Unit).
pose (gs1 := g s1).
pose (c := g s1).
pose (gs2 := g s2).
pose (d := g s2).
assert (Hgs1 : gs1 = c) by reflexivity.
assert (Hgs2 : gs2 = d) by reflexivity.
destruct c as [x px'].
destruct d as [y py'].
simple refine (Trunc_ind _ _ px') ; intros px.
simple refine (Trunc_ind _ _ py') ; intros py.
simpl.
cut (x = y).
{
enough (s1 = s2) as X.
{
intros.
unfold s1, s2 in X.
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
+ apply tt.
+ rewrite X ; apply tt.
}
transitivity (f gs1).
{ apply (fg s1)^. }
symmetry ; transitivity (f gs2).
{ apply (fg s2)^. }
rewrite Hgs1, Hgs2.
f_ap.
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
* apply (p2 @ p1^).
* refine (p2 @ _^ @ p1^). auto.
* refine (p2 @ _ @ p1^). auto.
* apply (p2 @ p1^).
}
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
** apply (px @ py^).
** refine (px @ _ @ py^). auto.
** refine (px @ _ @ py^). symmetry. auto.
** apply (px @ py^).
Defined.
End finite_hott.
Section empty.
Variable (A : Type).
Variable (X : A -> hProp)
(Xequiv : {a : A & a X} <~> Fin 0).
Context `{Univalence}.
Lemma X_empty : X = .
Proof.
apply path_forall.
intro z.
apply path_iff_hprop ; try contradiction.
intro x.
destruct Xequiv as [f fequiv].
contradiction (f(z;x)).
Defined.
End empty.
Section split.
Context `{Univalence}.
Variable (A : Type).
Variable (P : A -> hProp)
(n : nat)
(f : {a : A & P a } <~> Fin n + Unit).
Definition split : exists P' : Sub A, exists b : A,
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x merely (x = b))).
Proof.
pose (fun x : A => sig (fun y : Fin n => x = (f^-1 (inl y)).1)) as P'.
assert (forall x, IsHProp (P' x)).
{
intros a. unfold P'.
apply hprop_allpath.
intros [x px] [y py].
pose (p := px^ @ py).
assert (p2 : p # (f^-1 (inl x)).2 = (f^-1 (inl y)).2).
{ apply path_ishprop. }
simple refine (path_sigma' _ _ _).
- apply path_sum_inl with Unit.
refine (transport (fun z => z = inl y) (eisretr f (inl x)) _).
refine (transport (fun z => _ = z) (eisretr f (inl y)) _).
apply (ap f).
apply path_sigma_hprop. apply p.
- rewrite transport_paths_FlFr.
hott_simpl; cbn.
rewrite ap_compose.
rewrite (ap_compose inl f^-1).
rewrite ap_inl_path_sum_inl.
repeat (rewrite transport_paths_FlFr; hott_simpl).
rewrite !ap_pp.
rewrite ap_V.
rewrite <- !other_adj.
rewrite <- (ap_compose f (f^-1)).
rewrite ap_equiv.
rewrite !ap_pp.
rewrite ap_pr1_path_sigma_hprop.
rewrite !concat_pp_p.
rewrite !ap_V.
rewrite concat_Vp.
rewrite (concat_p_pp (ap pr1 (eissect f (f^-1 (inl x))))^).
rewrite concat_Vp.
hott_simpl. }
exists (fun a => BuildhProp (P' a)).
exists (f^-1 (inr tt)).1.
split.
{ unshelve eapply BuildEquiv.
{ refine (fun x => x.2.1). }
apply isequiv_biinv.
unshelve esplit;
exists (fun x => (((f^-1 (inl x)).1; (x; idpath)))).
- intros [a [y p]]; cbn.
eapply path_sigma with p^.
apply path_ishprop.
- intros x; cbn.
reflexivity. }
{ intros a.
unfold P'.
apply path_iff_hprop.
- intros Ha.
pose (y := f (a;Ha)).
assert (Hy : y = f (a; Ha)) by reflexivity.
destruct y as [y | []].
+ refine (tr (inl _)).
exists y.
rewrite Hy.
by rewrite eissect.
+ refine (tr (inr (tr _))).
rewrite Hy.
by rewrite eissect.
- intros Hstuff.
strip_truncations.
destruct Hstuff as [[y Hy] | Ha].
+ rewrite Hy.
apply (f^-1 (inl y)).2.
+ strip_truncations.
rewrite Ha.
apply (f^-1 (inr tt)).2. }
Defined.
End split.
Arguments Bfin {_} _.
Arguments split {_} {_} _ _ _.
2017-08-24 16:45:37 +02:00
Section Bfin_no_singletons.
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
Proof.
exists x.
simple refine (S1_ind (fun z => merely(z = base)) _ _ x) ; simpl.
- apply (tr idpath).
- apply path_ishprop.
Defined.
Instance S1toSig_equiv : IsEquiv S1toSig.
Proof.
apply isequiv_biinv.
split.
- exists (fun x => x.1).
simple refine (S1_ind _ _ _) ; simpl.
* reflexivity.
* rewrite transport_paths_FlFr.
hott_simpl.
- exists (fun x => x.1).
intros [z x].
simple refine (path_sigma _ _ _ _ _) ; simpl.
* reflexivity.
* apply path_ishprop.
Defined.
2017-08-24 16:45:37 +02:00
Theorem no_singleton `{Univalence} (Hsing : Bfin {|base|}) : Empty.
Proof.
destruct Hsing as [n equiv].
strip_truncations.
assert (S1 <~> Fin n) as X.
{ apply (equiv_compose equiv S1toSig). }
assert (IsHSet S1) as X1.
{
rewrite (path_universe X).
apply _.
}
enough (idpath = loop).
- assert (S1_encode _ idpath = S1_encode _ (loopexp loop (pos Int.one))) as H' by f_ap.
rewrite S1_encode_loopexp in H'. simpl in H'. symmetry in H'.
apply (pos_neq_zero H').
- apply set_path2.
Defined.
2017-08-24 16:45:37 +02:00
End Bfin_no_singletons.
(* If A has decidable equality, then every Bfin subobject has decidable membership *)
Section dec_membership.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Global Instance DecidableMembership (P : Sub A) (Hfin : Bfin P) (a : A) :
Decidable (a P).
Proof.
destruct Hfin as [n Hequiv].
strip_truncations.
revert Hequiv.
revert P.
induction n.
- intros.
pose (X_empty _ P Hequiv) as p.
rewrite p.
apply _.
- intros.
destruct (split P n Hequiv) as
(P' & b & HP' & HP).
unfold member, sub_membership.
rewrite (HP a).
destruct (IHn P' HP') as [IH | IH].
+ left. apply (tr (inl IH)).
+ destruct (dec (a = b)) as [Hab | Hab].
left. apply (tr (inr (tr Hab))).
right. intros α. strip_truncations.
destruct α as [? | ?]; [ | strip_truncations]; contradiction.
Defined.
End dec_membership.
Section bfin_kfin.
Context `{Univalence}.
2017-08-24 18:41:31 +02:00
Lemma bfin_to_kfin : forall (B : Type), Finite B -> Kf B.
Proof.
apply finite_ind_hprop.
- intros. apply _.
- apply Kf_unfold.
exists . intros [].
- intros B [n f] IH.
strip_truncations.
apply Kf_unfold in IH.
destruct IH as [X HX].
apply Kf_unfold.
Require Import fsets.monad.
exists ((ffmap inl X) {|inr tt|}); simpl.
intros [a | []]; apply tr.
+ left.
apply fmap_isIn.
apply (HX a).
+ right. apply (tr idpath).
Defined.
Definition bfin_to_kfin_sub A : forall (P : Sub A), Bfin P -> Kf_sub _ P.
Proof.
intros P [n f].
strip_truncations.
revert f. revert P.
induction n; intros P f.
- exists .
apply path_forall; intro a; simpl.
apply path_iff_hprop; [ | contradiction ].
intros p.
apply (f (a;p)).
- destruct (split P n f) as
(P' & b & HP' & HP).
destruct (IHn P' HP') as [Y HY].
exists (Y {|b|}).
apply path_forall; intro a. simpl.
rewrite <- HY.
apply HP.
Defined.
End bfin_kfin.
Section kfin_bfin.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Lemma bfin_union : @closedUnion A Bfin.
Proof.
intros X Y HX HY.
destruct HX as [n fX].
strip_truncations.
revert fX. revert X.
induction n; intros X fX.
- destruct HY as [m fY]. strip_truncations.
exists m. apply tr.
transitivity {a : A & a Y}; [ | assumption ].
apply equiv_functor_sigma_id.
intros a.
apply equiv_iff_hprop.
* intros Ha. strip_truncations.
destruct Ha as [Ha | Ha]; [ | apply Ha ].
contradiction (fX (a;Ha)).
* intros Ha. apply tr. by right.
- destruct (split X n fX) as
(X' & b & HX' & HX).
assert (Bfin X') by (eexists; apply (tr HX')).
destruct (dec (b X')) as [HX'b | HX'b].
+ cut (X Y = X' Y).
{ intros HXY. rewrite HXY.
by apply IHn. }
apply path_forall. intro a.
unfold union, sub_union, lattice.max_fun.
apply path_iff_hprop.
* intros Ha.
strip_truncations.
destruct Ha as [HXa | HYa]; [ | apply tr; by right ].
rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab];
[ | strip_truncations ]; apply tr; left.
** done.
** rewrite Hab. apply HX'b.
* intros Ha.
strip_truncations. apply tr.
destruct Ha as [HXa | HYa]; [ left | by right ].
rewrite HX. apply (tr (inl HXa)).
+ (* b ∉ X' *)
destruct (IHn X' HX') as [n' fw].
strip_truncations.
destruct (dec (b Y)) as [HYb | HYb].
{ exists n'. apply tr.
transitivity {a : A & a X' Y}; [ | apply fw ].
apply equiv_functor_sigma_id. intro a.
apply equiv_iff_hprop; cbn; simple refine (Trunc_rec _).
{ intros [HXa | HYa].
- rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab]; apply tr.
* by left.
* right. strip_truncations.
rewrite Hab. apply HYb.
- apply tr. by right. }
{ intros [HX'a | HYa]; apply tr.
* left. rewrite HX.
apply (tr (inl HX'a)).
* by right. } }
{ exists (n'.+1).
apply tr.
unshelve eapply BuildEquiv.
{ intros [a Ha]. cbn in Ha.
destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
- right. apply tt.
- left. refine (fw (a;_)).
strip_truncations. apply tr.
destruct Ha as [HXa | HYa].
+ left. rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab']; [apply HX'a |].
strip_truncations. contradiction.
+ right. apply HYa. }
{ apply isequiv_biinv.
unshelve esplit; cbn.
- unshelve eexists.
+ intros [m | []].
* destruct (fw^-1 m) as [a Ha].
exists a.
strip_truncations. apply tr.
destruct Ha as [HX'a | HYa]; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [a Ha]; cbn.
strip_truncations.
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
destruct (H a b); cbn.
* apply p^.
* rewrite eissect; cbn.
reflexivity.
- unshelve eexists. (* TODO: Duplication!! *)
+ intros [m | []].
* exists (fw^-1 m).1.
simple refine (Trunc_rec _ (fw^-1 m).2).
intros [HX'a | HYa]; apply tr; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [m | []]; cbn.
destruct (dec (_ = b)) as [Hb | Hb]; cbn.
{ destruct (fw^-1 m) as [a Ha]. simpl in Hb.
simple refine (Trunc_rec _ Ha). clear Ha.
rewrite Hb.
intros [HX'b2 | HYb2]; contradiction. }
{ f_ap. transitivity (fw (fw^-1 m)).
- f_ap.
apply path_sigma' with idpath.
apply path_ishprop.
- apply eisretr. }
destruct (dec (b = b)); [ reflexivity | contradiction ]. } }
Defined.
Definition FSet_to_Bfin : forall (X : FSet A), Bfin (map X).
Proof.
hinduction; try (intros; apply path_ishprop).
- exists 0. apply tr. simpl.
simple refine (BuildEquiv _ _ _ _).
destruct 1 as [? []].
- intros a.
exists 1. apply tr. simpl.
transitivity Unit; [ | symmetry; apply sum_empty_l ].
unshelve esplit.
+ exact (fun _ => tt).
+ apply isequiv_biinv. split.
* exists (fun _ => (a; tr(idpath))).
intros [b Hb]. strip_truncations.
apply path_sigma' with Hb^.
apply path_ishprop.
* exists (fun _ => (a; tr(idpath))).
intros []. reflexivity.
- intros Y1 Y2 HY1 HY2.
apply bfin_union; auto.
Defined.
End kfin_bfin.
Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
Proof.
apply Kf_unfold in Hfin.
destruct Hfin as [Y HY].
pose (X' := FSet_to_Bfin _ Y).
unfold Bfin in X'.
simple refine (finite_equiv' _ _ X').
unshelve esplit.
- intros [a ?]. apply a.
- apply isequiv_biinv. split.
* exists (fun a => (a;HY a)).
intros [b Hb].
apply path_sigma' with idpath.
apply path_ishprop.
* exists (fun a => (a;HY a)).
intros b. reflexivity.
Defined.